|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import pickle |
|
import unittest |
|
|
|
import torch |
|
from pytorch3d.ops.marching_cubes import marching_cubes, marching_cubes_naive |
|
|
|
from .common_testing import get_tests_dir, TestCaseMixin |
|
|
|
|
|
USE_SCIKIT = False |
|
DATA_DIR = get_tests_dir() / "data" |
|
|
|
|
|
def convert_to_local(verts, volume_dim): |
|
return (2 * verts) / (volume_dim - 1) - 1 |
|
|
|
|
|
class TestCubeConfiguration(TestCaseMixin, unittest.TestCase): |
|
|
|
|
|
|
|
|
|
|
|
def test_empty_volume(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor([[]]) |
|
expected_faces = torch.tensor([[]], dtype=torch.int64) |
|
self.assertClose(verts, expected_verts) |
|
self.assertClose(faces, expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts, expected_verts) |
|
self.assertClose(faces, expected_faces) |
|
|
|
def test_case1(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 0, 0, 0] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
expected_verts = torch.tensor( |
|
[ |
|
[0.5, 0, 0], |
|
[0, 0.5, 0], |
|
[0, 0, 0.5], |
|
] |
|
) |
|
expected_faces = torch.tensor([[0, 1, 2]]) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
expected_verts = convert_to_local(expected_verts, 2) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
def test_case2(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 0:2, 0, 0] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[1.0000, 0.0000, 0.5000], |
|
[0.0000, 0.5000, 0.0000], |
|
[0.0000, 0.0000, 0.5000], |
|
[1.0000, 0.5000, 0.0000], |
|
] |
|
) |
|
expected_faces = torch.tensor([[0, 1, 2], [3, 1, 0]]) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 2) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
def test_case3(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 0, 0, 0] = 0 |
|
volume_data[0, 1, 1, 0] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[1.0000, 0.5000, 0.0000], |
|
[1.0000, 1.0000, 0.5000], |
|
[0.5000, 1.0000, 0.0000], |
|
[0.5000, 0.0000, 0.0000], |
|
[0.0000, 0.5000, 0.0000], |
|
[0.0000, 0.0000, 0.5000], |
|
] |
|
) |
|
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5]]) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 2) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
def test_case4(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 1, 0, 0] = 0 |
|
volume_data[0, 1, 0, 1] = 0 |
|
volume_data[0, 0, 0, 1] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[0.0000, 0.0000, 0.5000], |
|
[1.0000, 0.5000, 0.0000], |
|
[0.5000, 0.0000, 0.0000], |
|
[0.0000, 0.5000, 1.0000], |
|
[1.0000, 0.5000, 1.0000], |
|
] |
|
) |
|
expected_faces = torch.tensor([[0, 1, 2], [0, 3, 1], [3, 4, 1]]) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 2) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
def test_case5(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 0:2, 0, 0:2] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[1.0000, 0.5000, 0.0000], |
|
[0.0000, 0.5000, 0.0000], |
|
[1.0000, 0.5000, 1.0000], |
|
[0.0000, 0.5000, 1.0000], |
|
] |
|
) |
|
|
|
expected_faces = torch.tensor([[0, 1, 2], [2, 1, 3]]) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 2) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
def test_case6(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 1, 0, 0] = 0 |
|
volume_data[0, 1, 0, 1] = 0 |
|
volume_data[0, 0, 0, 1] = 0 |
|
volume_data[0, 0, 1, 0] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[0.5000, 1.0000, 0.0000], |
|
[0.0000, 1.0000, 0.5000], |
|
[0.0000, 0.5000, 0.0000], |
|
[1.0000, 0.5000, 0.0000], |
|
[0.5000, 0.0000, 0.0000], |
|
[0.0000, 0.5000, 1.0000], |
|
[1.0000, 0.5000, 1.0000], |
|
[0.0000, 0.0000, 0.5000], |
|
] |
|
) |
|
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [3, 5, 6], [5, 4, 7]]) |
|
|
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 2) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
def test_case7(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 0, 0, 0] = 0 |
|
volume_data[0, 1, 0, 1] = 0 |
|
volume_data[0, 1, 1, 0] = 0 |
|
volume_data[0, 0, 1, 1] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[0.5000, 1.0000, 1.0000], |
|
[0.0000, 0.5000, 1.0000], |
|
[0.0000, 1.0000, 0.5000], |
|
[1.0000, 0.0000, 0.5000], |
|
[0.5000, 0.0000, 1.0000], |
|
[1.0000, 0.5000, 1.0000], |
|
[0.5000, 0.0000, 0.0000], |
|
[0.0000, 0.5000, 0.0000], |
|
[0.0000, 0.0000, 0.5000], |
|
[0.5000, 1.0000, 0.0000], |
|
[1.0000, 0.5000, 0.0000], |
|
[1.0000, 1.0000, 0.5000], |
|
] |
|
) |
|
|
|
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) |
|
|
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 2) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
def test_case8(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 0, 0, 0] = 0 |
|
volume_data[0, 0, 0, 1] = 0 |
|
volume_data[0, 1, 0, 1] = 0 |
|
volume_data[0, 0, 1, 1] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[1.0000, 0.5000, 1.0000], |
|
[0.0000, 1.0000, 0.5000], |
|
[0.5000, 1.0000, 1.0000], |
|
[1.0000, 0.0000, 0.5000], |
|
[0.0000, 0.5000, 0.0000], |
|
[0.5000, 0.0000, 0.0000], |
|
] |
|
) |
|
expected_faces = torch.tensor([[0, 1, 2], [3, 1, 0], [3, 4, 1], [3, 5, 4]]) |
|
|
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 2) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
def test_case9(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 1, 0, 0] = 0 |
|
volume_data[0, 0, 0, 1] = 0 |
|
volume_data[0, 1, 0, 1] = 0 |
|
volume_data[0, 0, 1, 1] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[0.5000, 0.0000, 0.0000], |
|
[0.0000, 0.0000, 0.5000], |
|
[0.0000, 1.0000, 0.5000], |
|
[1.0000, 0.5000, 1.0000], |
|
[1.0000, 0.5000, 0.0000], |
|
[0.5000, 1.0000, 1.0000], |
|
] |
|
) |
|
expected_faces = torch.tensor([[0, 1, 2], [0, 2, 3], [0, 3, 4], [5, 3, 2]]) |
|
|
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 2) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
def test_case10(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 0, 0, 0] = 0 |
|
volume_data[0, 1, 1, 1] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[0.5000, 0.0000, 0.0000], |
|
[0.0000, 0.5000, 0.0000], |
|
[0.0000, 0.0000, 0.5000], |
|
[1.0000, 1.0000, 0.5000], |
|
[1.0000, 0.5000, 1.0000], |
|
[0.5000, 1.0000, 1.0000], |
|
] |
|
) |
|
|
|
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5]]) |
|
|
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 2) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
def test_case11(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 0, 0, 0] = 0 |
|
volume_data[0, 1, 0, 0] = 0 |
|
volume_data[0, 1, 1, 1] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[1.0000, 0.0000, 0.5000], |
|
[0.0000, 0.5000, 0.0000], |
|
[0.0000, 0.0000, 0.5000], |
|
[1.0000, 0.5000, 0.0000], |
|
[1.0000, 1.0000, 0.5000], |
|
[1.0000, 0.5000, 1.0000], |
|
[0.5000, 1.0000, 1.0000], |
|
] |
|
) |
|
|
|
expected_faces = torch.tensor([[0, 1, 2], [0, 3, 1], [4, 5, 6]]) |
|
|
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 2) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
def test_case12(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 1, 0, 0] = 0 |
|
volume_data[0, 0, 1, 0] = 0 |
|
volume_data[0, 1, 1, 1] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[1.0000, 0.0000, 0.5000], |
|
[1.0000, 0.5000, 0.0000], |
|
[0.5000, 0.0000, 0.0000], |
|
[1.0000, 1.0000, 0.5000], |
|
[1.0000, 0.5000, 1.0000], |
|
[0.5000, 1.0000, 1.0000], |
|
[0.0000, 0.5000, 0.0000], |
|
[0.5000, 1.0000, 0.0000], |
|
[0.0000, 1.0000, 0.5000], |
|
] |
|
) |
|
|
|
expected_faces = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) |
|
|
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 2) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
def test_case13(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 0, 0, 0] = 0 |
|
volume_data[0, 0, 1, 0] = 0 |
|
volume_data[0, 1, 0, 1] = 0 |
|
volume_data[0, 1, 1, 1] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[1.0000, 0.0000, 0.5000], |
|
[0.5000, 0.0000, 1.0000], |
|
[1.0000, 1.0000, 0.5000], |
|
[0.5000, 1.0000, 1.0000], |
|
[0.0000, 0.0000, 0.5000], |
|
[0.5000, 0.0000, 0.0000], |
|
[0.5000, 1.0000, 0.0000], |
|
[0.0000, 1.0000, 0.5000], |
|
] |
|
) |
|
|
|
expected_faces = torch.tensor([[0, 1, 2], [2, 1, 3], [4, 5, 6], [4, 6, 7]]) |
|
|
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 2) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
def test_case14(self): |
|
volume_data = torch.ones(1, 2, 2, 2) |
|
volume_data[0, 0, 0, 0] = 0 |
|
volume_data[0, 0, 0, 1] = 0 |
|
volume_data[0, 1, 0, 1] = 0 |
|
volume_data[0, 1, 1, 1] = 0 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[0.5000, 0.0000, 0.0000], |
|
[0.0000, 0.5000, 0.0000], |
|
[0.0000, 0.5000, 1.0000], |
|
[1.0000, 1.0000, 0.5000], |
|
[1.0000, 0.0000, 0.5000], |
|
[0.5000, 1.0000, 1.0000], |
|
] |
|
) |
|
|
|
expected_faces = torch.tensor([[0, 1, 2], [0, 2, 3], [0, 3, 4], [3, 2, 5]]) |
|
|
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 2) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
|
|
class TestMarchingCubes(TestCaseMixin, unittest.TestCase): |
|
def test_single_point(self): |
|
volume_data = torch.zeros(1, 3, 3, 3) |
|
volume_data[0, 1, 1, 1] = 1 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[1.0000, 0.5000, 1.0000], |
|
[1.0000, 1.0000, 0.5000], |
|
[0.5000, 1.0000, 1.0000], |
|
[1.5000, 1.0000, 1.0000], |
|
[1.0000, 1.5000, 1.0000], |
|
[1.0000, 1.0000, 1.5000], |
|
] |
|
) |
|
expected_faces = torch.tensor( |
|
[ |
|
[0, 1, 2], |
|
[1, 0, 3], |
|
[1, 4, 2], |
|
[1, 3, 4], |
|
[0, 2, 5], |
|
[3, 0, 5], |
|
[2, 4, 5], |
|
[3, 5, 4], |
|
] |
|
) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 3) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) |
|
|
|
verts, faces = marching_cubes(volume_data, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) |
|
|
|
def test_cube(self): |
|
volume_data = torch.zeros(1, 5, 5, 5) |
|
volume_data[0, 1, 1, 1] = 1 |
|
volume_data[0, 1, 1, 2] = 1 |
|
volume_data[0, 2, 1, 1] = 1 |
|
volume_data[0, 2, 1, 2] = 1 |
|
volume_data[0, 1, 2, 1] = 1 |
|
volume_data[0, 1, 2, 2] = 1 |
|
volume_data[0, 2, 2, 1] = 1 |
|
volume_data[0, 2, 2, 2] = 1 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
expected_verts = torch.tensor( |
|
[ |
|
[1.0000, 0.9000, 1.0000], |
|
[1.0000, 1.0000, 0.9000], |
|
[0.9000, 1.0000, 1.0000], |
|
[2.0000, 0.9000, 1.0000], |
|
[2.0000, 1.0000, 0.9000], |
|
[2.1000, 1.0000, 1.0000], |
|
[1.0000, 2.0000, 0.9000], |
|
[0.9000, 2.0000, 1.0000], |
|
[2.0000, 2.0000, 0.9000], |
|
[2.1000, 2.0000, 1.0000], |
|
[1.0000, 2.1000, 1.0000], |
|
[2.0000, 2.1000, 1.0000], |
|
[1.0000, 0.9000, 2.0000], |
|
[0.9000, 1.0000, 2.0000], |
|
[2.0000, 0.9000, 2.0000], |
|
[2.1000, 1.0000, 2.0000], |
|
[0.9000, 2.0000, 2.0000], |
|
[2.1000, 2.0000, 2.0000], |
|
[1.0000, 2.1000, 2.0000], |
|
[2.0000, 2.1000, 2.0000], |
|
[1.0000, 1.0000, 2.1000], |
|
[2.0000, 1.0000, 2.1000], |
|
[1.0000, 2.0000, 2.1000], |
|
[2.0000, 2.0000, 2.1000], |
|
] |
|
) |
|
|
|
expected_faces = torch.tensor( |
|
[ |
|
[0, 1, 2], |
|
[0, 3, 4], |
|
[1, 0, 4], |
|
[4, 3, 5], |
|
[1, 6, 7], |
|
[2, 1, 7], |
|
[4, 8, 1], |
|
[1, 8, 6], |
|
[8, 4, 5], |
|
[9, 8, 5], |
|
[6, 10, 7], |
|
[6, 8, 11], |
|
[10, 6, 11], |
|
[8, 9, 11], |
|
[12, 0, 2], |
|
[13, 12, 2], |
|
[3, 0, 14], |
|
[14, 0, 12], |
|
[15, 5, 3], |
|
[14, 15, 3], |
|
[2, 7, 13], |
|
[7, 16, 13], |
|
[5, 15, 9], |
|
[9, 15, 17], |
|
[10, 18, 16], |
|
[7, 10, 16], |
|
[11, 19, 10], |
|
[19, 18, 10], |
|
[9, 17, 19], |
|
[11, 9, 19], |
|
[12, 13, 20], |
|
[14, 12, 20], |
|
[21, 14, 20], |
|
[15, 14, 21], |
|
[13, 16, 22], |
|
[20, 13, 22], |
|
[21, 20, 23], |
|
[20, 22, 23], |
|
[17, 15, 21], |
|
[23, 17, 21], |
|
[16, 18, 22], |
|
[23, 22, 18], |
|
[19, 23, 18], |
|
[17, 23, 19], |
|
] |
|
) |
|
verts, faces = marching_cubes_naive(volume_data, 0.9, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, 0.9, return_local_coords=False) |
|
verts2, faces2 = marching_cubes(volume_data, 0.9, return_local_coords=False) |
|
|
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, 0.9, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 5) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
|
|
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) |
|
|
|
verts, faces = marching_cubes(volume_data, 0.9, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) |
|
|
|
def test_cube_no_duplicate_verts(self): |
|
volume_data = torch.zeros(1, 5, 5, 5) |
|
volume_data[0, 1, 1, 1] = 1 |
|
volume_data[0, 1, 1, 2] = 1 |
|
volume_data[0, 2, 1, 1] = 1 |
|
volume_data[0, 2, 1, 2] = 1 |
|
volume_data[0, 1, 2, 1] = 1 |
|
volume_data[0, 1, 2, 2] = 1 |
|
volume_data[0, 2, 2, 1] = 1 |
|
volume_data[0, 2, 2, 2] = 1 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, 1, return_local_coords=False) |
|
|
|
expected_verts = torch.tensor( |
|
[ |
|
[2.0, 1.0, 1.0], |
|
[2.0, 2.0, 1.0], |
|
[1.0, 1.0, 1.0], |
|
[1.0, 2.0, 1.0], |
|
[2.0, 1.0, 1.0], |
|
[1.0, 1.0, 1.0], |
|
[2.0, 1.0, 2.0], |
|
[1.0, 1.0, 2.0], |
|
[1.0, 1.0, 1.0], |
|
[1.0, 2.0, 1.0], |
|
[1.0, 1.0, 2.0], |
|
[1.0, 2.0, 2.0], |
|
[2.0, 1.0, 1.0], |
|
[2.0, 1.0, 2.0], |
|
[2.0, 2.0, 1.0], |
|
[2.0, 2.0, 2.0], |
|
[2.0, 2.0, 1.0], |
|
[2.0, 2.0, 2.0], |
|
[1.0, 2.0, 1.0], |
|
[1.0, 2.0, 2.0], |
|
[2.0, 1.0, 2.0], |
|
[1.0, 1.0, 2.0], |
|
[2.0, 2.0, 2.0], |
|
[1.0, 2.0, 2.0], |
|
] |
|
) |
|
|
|
expected_faces = torch.tensor( |
|
[ |
|
[0, 1, 2], |
|
[2, 1, 3], |
|
[4, 5, 6], |
|
[6, 5, 7], |
|
[8, 9, 10], |
|
[9, 11, 10], |
|
[12, 13, 14], |
|
[14, 13, 15], |
|
[16, 17, 18], |
|
[17, 19, 18], |
|
[20, 21, 22], |
|
[21, 23, 22], |
|
] |
|
) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume_data, 1, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive(volume_data, 1, return_local_coords=True) |
|
expected_verts = convert_to_local(expected_verts, 5) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) |
|
|
|
def test_sphere(self): |
|
|
|
volume = torch.Tensor( |
|
[ |
|
[ |
|
[(x - 10) ** 2 + (y - 10) ** 2 + (z - 10) ** 2 for z in range(20)] |
|
for y in range(20) |
|
] |
|
for x in range(20) |
|
] |
|
).unsqueeze(0) |
|
volume = volume.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive( |
|
volume, isolevel=64, return_local_coords=False |
|
) |
|
|
|
data_filename = "test_marching_cubes_data/sphere_level64.pickle" |
|
filename = os.path.join(DATA_DIR, data_filename) |
|
with open(filename, "rb") as file: |
|
verts_and_faces = pickle.load(file) |
|
expected_verts = verts_and_faces["verts"] |
|
expected_faces = verts_and_faces["faces"] |
|
|
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes(volume, 64, return_local_coords=False) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
verts, faces = marching_cubes_naive( |
|
volume, isolevel=64, return_local_coords=True |
|
) |
|
|
|
expected_verts = convert_to_local(expected_verts, 20) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
|
|
|
|
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) |
|
|
|
verts, faces = marching_cubes(volume, 64, return_local_coords=True) |
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
self.assertTrue(verts[0].ge(-1).all() and verts[0].le(1).all()) |
|
|
|
|
|
def test_double_ellipsoid(self): |
|
if USE_SCIKIT: |
|
import numpy as np |
|
from skimage.draw import ellipsoid |
|
|
|
ellip_base = ellipsoid(6, 10, 16, levelset=True) |
|
ellip_double = np.concatenate( |
|
(ellip_base[:-1, ...], ellip_base[2:, ...]), axis=0 |
|
) |
|
volume = torch.Tensor(ellip_double).unsqueeze(0) |
|
volume = volume.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume, isolevel=0.001) |
|
verts2, faces2 = marching_cubes(volume, isolevel=0.001) |
|
|
|
data_filename = "test_marching_cubes_data/double_ellipsoid.pickle" |
|
filename = os.path.join(DATA_DIR, data_filename) |
|
with open(filename, "rb") as file: |
|
verts_and_faces = pickle.load(file) |
|
expected_verts = verts_and_faces["verts"] |
|
expected_faces = verts_and_faces["faces"] |
|
|
|
self.assertClose(verts[0], expected_verts) |
|
self.assertClose(faces[0], expected_faces) |
|
self.assertClose(verts2[0], expected_verts) |
|
self.assertClose(faces2[0], expected_faces) |
|
|
|
def test_cube_surface_area(self): |
|
if USE_SCIKIT: |
|
from skimage.measure import marching_cubes_classic, mesh_surface_area |
|
|
|
volume_data = torch.zeros(1, 5, 5, 5) |
|
volume_data[0, 1, 1, 1] = 1 |
|
volume_data[0, 1, 1, 2] = 1 |
|
volume_data[0, 2, 1, 1] = 1 |
|
volume_data[0, 2, 1, 2] = 1 |
|
volume_data[0, 1, 2, 1] = 1 |
|
volume_data[0, 1, 2, 2] = 1 |
|
volume_data[0, 2, 2, 1] = 1 |
|
volume_data[0, 2, 2, 2] = 1 |
|
volume_data = volume_data.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume_data, return_local_coords=False) |
|
verts_c, faces_c = marching_cubes(volume_data, return_local_coords=False) |
|
verts_sci, faces_sci = marching_cubes_classic(volume_data[0]) |
|
|
|
surf = mesh_surface_area(verts[0], faces[0]) |
|
surf_c = mesh_surface_area(verts_c[0], faces_c[0]) |
|
surf_sci = mesh_surface_area(verts_sci, faces_sci) |
|
|
|
self.assertClose(surf, surf_sci) |
|
self.assertClose(surf, surf_c) |
|
|
|
def test_sphere_surface_area(self): |
|
if USE_SCIKIT: |
|
from skimage.measure import marching_cubes_classic, mesh_surface_area |
|
|
|
|
|
volume = torch.Tensor( |
|
[ |
|
[ |
|
[ |
|
(x - 10) ** 2 + (y - 10) ** 2 + (z - 10) ** 2 |
|
for z in range(20) |
|
] |
|
for y in range(20) |
|
] |
|
for x in range(20) |
|
] |
|
).unsqueeze(0) |
|
volume = volume.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume, isolevel=64) |
|
verts_c, faces_c = marching_cubes(volume, isolevel=64) |
|
verts_sci, faces_sci = marching_cubes_classic(volume[0], level=64) |
|
|
|
surf = mesh_surface_area(verts[0], faces[0]) |
|
surf_c = mesh_surface_area(verts_c[0], faces_c[0]) |
|
surf_sci = mesh_surface_area(verts_sci, faces_sci) |
|
|
|
self.assertClose(surf, surf_sci) |
|
self.assertClose(surf, surf_c) |
|
|
|
def test_double_ellipsoid_surface_area(self): |
|
if USE_SCIKIT: |
|
import numpy as np |
|
from skimage.draw import ellipsoid |
|
from skimage.measure import marching_cubes_classic, mesh_surface_area |
|
|
|
ellip_base = ellipsoid(6, 10, 16, levelset=True) |
|
ellip_double = np.concatenate( |
|
(ellip_base[:-1, ...], ellip_base[2:, ...]), axis=0 |
|
) |
|
volume = torch.Tensor(ellip_double).unsqueeze(0) |
|
volume = volume.permute(0, 3, 2, 1) |
|
verts, faces = marching_cubes_naive(volume, isolevel=0) |
|
verts_c, faces_c = marching_cubes(volume, isolevel=0) |
|
verts_sci, faces_sci = marching_cubes_classic(volume[0], level=0) |
|
|
|
surf = mesh_surface_area(verts[0], faces[0]) |
|
surf_c = mesh_surface_area(verts_c[0], faces_c[0]) |
|
surf_sci = mesh_surface_area(verts_sci, faces_sci) |
|
|
|
self.assertClose(surf, surf_sci) |
|
self.assertClose(surf, surf_c) |
|
|
|
def test_ball_example(self): |
|
N = 30 |
|
axis_tensor = torch.arange(0, N) |
|
X, Y, Z = torch.meshgrid(axis_tensor, axis_tensor, axis_tensor, indexing="ij") |
|
u = (X - 15) ** 2 + (Y - 15) ** 2 + (Z - 15) ** 2 - 8**2 |
|
u = u[None].float() |
|
verts, faces = marching_cubes_naive(u, 0, return_local_coords=False) |
|
verts2, faces2 = marching_cubes(u, 0, return_local_coords=False) |
|
self.assertClose(verts2[0], verts[0]) |
|
self.assertClose(faces2[0], faces[0]) |
|
verts3, faces3 = marching_cubes(u.cuda(), 0, return_local_coords=False) |
|
self.assertEqual(len(verts3), len(verts)) |
|
self.assertEqual(len(faces3), len(faces)) |
|
|
|
@staticmethod |
|
def marching_cubes_with_init(algo_type: str, batch_size: int, V: int, device: str): |
|
device = torch.device(device) |
|
volume_data = torch.rand( |
|
(batch_size, V, V, V), dtype=torch.float32, device=device |
|
) |
|
algo_table = { |
|
"naive": marching_cubes_naive, |
|
"extension": marching_cubes, |
|
} |
|
|
|
def convert(): |
|
algo_table[algo_type](volume_data, return_local_coords=False) |
|
torch.cuda.synchronize() |
|
|
|
return convert |
|
|