|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
from pytorch3d.ops import cot_laplacian, laplacian, norm_laplacian |
|
from pytorch3d.structures.meshes import Meshes |
|
|
|
from .common_testing import get_random_cuda_device, TestCaseMixin |
|
|
|
|
|
class TestLaplacianMatrices(TestCaseMixin, unittest.TestCase): |
|
def setUp(self) -> None: |
|
super().setUp() |
|
torch.manual_seed(1) |
|
|
|
def init_mesh(self) -> Meshes: |
|
V, F = 32, 64 |
|
device = get_random_cuda_device() |
|
|
|
verts = torch.rand((V, 3), dtype=torch.float32, device=device) |
|
|
|
faces = torch.stack([torch.randperm(V) for f in range(F)], dim=0)[:, :3] |
|
faces = faces.to(device=device) |
|
return Meshes(verts=[verts], faces=[faces]) |
|
|
|
def test_laplacian(self): |
|
mesh = self.init_mesh() |
|
verts = mesh.verts_packed() |
|
edges = mesh.edges_packed() |
|
V, E = verts.shape[0], edges.shape[0] |
|
|
|
L = laplacian(verts, edges) |
|
|
|
Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device) |
|
for e in range(E): |
|
e0, e1 = edges[e] |
|
Lnaive[e0, e1] = 1 |
|
|
|
Lnaive[e1, e0] = 1 |
|
|
|
deg = Lnaive.sum(1).view(-1, 1) |
|
deg[deg > 0] = 1.0 / deg[deg > 0] |
|
Lnaive = Lnaive * deg |
|
diag = torch.eye(V, dtype=torch.float32, device=mesh.device) |
|
Lnaive.masked_fill_(diag > 0, -1) |
|
|
|
self.assertClose(L.to_dense(), Lnaive) |
|
|
|
def test_cot_laplacian(self): |
|
mesh = self.init_mesh() |
|
verts = mesh.verts_packed() |
|
faces = mesh.faces_packed() |
|
V = verts.shape[0] |
|
|
|
eps = 1e-12 |
|
|
|
L, inv_areas = cot_laplacian(verts, faces, eps=eps) |
|
|
|
Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device) |
|
inv_areas_naive = torch.zeros((V, 1), dtype=torch.float32, device=verts.device) |
|
|
|
for f in faces: |
|
v0 = verts[f[0], :] |
|
v1 = verts[f[1], :] |
|
v2 = verts[f[2], :] |
|
A = (v1 - v2).norm() |
|
B = (v0 - v2).norm() |
|
C = (v0 - v1).norm() |
|
s = 0.5 * (A + B + C) |
|
|
|
face_area = (s * (s - A) * (s - B) * (s - C)).clamp_(min=1e-12).sqrt() |
|
inv_areas_naive[f[0]] += face_area |
|
inv_areas_naive[f[1]] += face_area |
|
inv_areas_naive[f[2]] += face_area |
|
|
|
A2, B2, C2 = A * A, B * B, C * C |
|
cota = (B2 + C2 - A2) / face_area / 4.0 |
|
cotb = (A2 + C2 - B2) / face_area / 4.0 |
|
cotc = (A2 + B2 - C2) / face_area / 4.0 |
|
|
|
Lnaive[f[1], f[2]] += cota |
|
Lnaive[f[2], f[0]] += cotb |
|
Lnaive[f[0], f[1]] += cotc |
|
|
|
Lnaive[f[2], f[1]] += cota |
|
Lnaive[f[0], f[2]] += cotb |
|
Lnaive[f[1], f[0]] += cotc |
|
|
|
idx = inv_areas_naive > 0 |
|
inv_areas_naive[idx] = 1.0 / inv_areas_naive[idx] |
|
|
|
self.assertClose(inv_areas, inv_areas_naive) |
|
self.assertClose(L.to_dense(), Lnaive) |
|
|
|
def test_norm_laplacian(self): |
|
mesh = self.init_mesh() |
|
verts = mesh.verts_packed() |
|
edges = mesh.edges_packed() |
|
V, E = verts.shape[0], edges.shape[0] |
|
|
|
eps = 1e-12 |
|
|
|
L = norm_laplacian(verts, edges, eps=eps) |
|
|
|
Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device) |
|
for e in range(E): |
|
e0, e1 = edges[e] |
|
v0 = verts[e0] |
|
v1 = verts[e1] |
|
|
|
w01 = 1.0 / ((v0 - v1).norm() + eps) |
|
Lnaive[e0, e1] += w01 |
|
Lnaive[e1, e0] += w01 |
|
|
|
self.assertClose(L.to_dense(), Lnaive) |
|
|