|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
from itertools import product |
|
|
|
import torch |
|
from pytorch3d.ops.knn import _KNN, knn_gather, knn_points |
|
|
|
from .common_testing import get_random_cuda_device, TestCaseMixin |
|
|
|
|
|
class TestKNN(TestCaseMixin, unittest.TestCase): |
|
def setUp(self) -> None: |
|
super().setUp() |
|
torch.manual_seed(1) |
|
|
|
@staticmethod |
|
def _knn_points_naive( |
|
p1, p2, lengths1, lengths2, K: int, norm: int = 2 |
|
) -> torch.Tensor: |
|
""" |
|
Naive PyTorch implementation of K-Nearest Neighbors. |
|
Returns always sorted results |
|
""" |
|
N, P1, D = p1.shape |
|
_N, P2, _D = p2.shape |
|
|
|
assert N == _N and D == _D |
|
|
|
if lengths1 is None: |
|
lengths1 = torch.full((N,), P1, dtype=torch.int64, device=p1.device) |
|
if lengths2 is None: |
|
lengths2 = torch.full((N,), P2, dtype=torch.int64, device=p1.device) |
|
|
|
dists = torch.zeros((N, P1, K), dtype=torch.float32, device=p1.device) |
|
idx = torch.zeros((N, P1, K), dtype=torch.int64, device=p1.device) |
|
|
|
for n in range(N): |
|
num1 = lengths1[n].item() |
|
num2 = lengths2[n].item() |
|
pp1 = p1[n, :num1].view(num1, 1, D) |
|
pp2 = p2[n, :num2].view(1, num2, D) |
|
diff = pp1 - pp2 |
|
if norm == 2: |
|
diff = (diff * diff).sum(2) |
|
elif norm == 1: |
|
diff = diff.abs().sum(2) |
|
else: |
|
raise ValueError("No support for norm %d" % (norm)) |
|
num2 = min(num2, K) |
|
for i in range(num1): |
|
dd = diff[i] |
|
srt_dd, srt_idx = dd.sort() |
|
|
|
dists[n, i, :num2] = srt_dd[:num2] |
|
idx[n, i, :num2] = srt_idx[:num2] |
|
|
|
return _KNN(dists=dists, idx=idx, knn=None) |
|
|
|
def _knn_vs_python_square_helper(self, device, return_sorted): |
|
Ns = [1, 4] |
|
Ds = [3, 5, 8] |
|
P1s = [8, 24] |
|
P2s = [8, 16, 32] |
|
Ks = [1, 3, 10] |
|
norms = [1, 2] |
|
versions = [0, 1, 2, 3] |
|
factors = [Ns, Ds, P1s, P2s, Ks, norms] |
|
for N, D, P1, P2, K, norm in product(*factors): |
|
for version in versions: |
|
if version == 3 and K > 4: |
|
continue |
|
x = torch.randn(N, P1, D, device=device, requires_grad=True) |
|
x_cuda = x.clone().detach() |
|
x_cuda.requires_grad_(True) |
|
y = torch.randn(N, P2, D, device=device, requires_grad=True) |
|
y_cuda = y.clone().detach() |
|
y_cuda.requires_grad_(True) |
|
|
|
|
|
out1 = self._knn_points_naive( |
|
x, y, lengths1=None, lengths2=None, K=K, norm=norm |
|
) |
|
out2 = knn_points( |
|
x_cuda, |
|
y_cuda, |
|
K=K, |
|
norm=norm, |
|
version=version, |
|
return_sorted=return_sorted, |
|
) |
|
if K > 1 and not return_sorted: |
|
|
|
self.assertFalse(torch.allclose(out1[0], out2[0])) |
|
self.assertFalse(torch.allclose(out1[1], out2[1])) |
|
|
|
dists, idx, _ = out2 |
|
if P2 < K: |
|
dists[..., P2:] = float("inf") |
|
dists, sort_idx = dists.sort(dim=2) |
|
dists[..., P2:] = 0 |
|
else: |
|
dists, sort_idx = dists.sort(dim=2) |
|
idx = idx.gather(2, sort_idx) |
|
out2 = _KNN(dists, idx, None) |
|
|
|
self.assertClose(out1[0], out2[0]) |
|
self.assertTrue(torch.all(out1[1] == out2[1])) |
|
|
|
|
|
grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device) |
|
loss1 = (out1.dists * grad_dist).sum() |
|
loss1.backward() |
|
loss2 = (out2.dists * grad_dist).sum() |
|
loss2.backward() |
|
|
|
self.assertClose(x_cuda.grad, x.grad, atol=5e-6) |
|
self.assertClose(y_cuda.grad, y.grad, atol=5e-6) |
|
|
|
def test_knn_vs_python_square_cpu(self): |
|
device = torch.device("cpu") |
|
self._knn_vs_python_square_helper(device, return_sorted=True) |
|
|
|
def test_knn_vs_python_square_cuda(self): |
|
device = get_random_cuda_device() |
|
|
|
self._knn_vs_python_square_helper(device, return_sorted=True) |
|
self._knn_vs_python_square_helper(device, return_sorted=False) |
|
|
|
def _knn_vs_python_ragged_helper(self, device): |
|
Ns = [1, 4] |
|
Ds = [3, 5, 8] |
|
P1s = [8, 24] |
|
P2s = [8, 16, 32] |
|
Ks = [1, 3, 10] |
|
norms = [1, 2] |
|
factors = [Ns, Ds, P1s, P2s, Ks, norms] |
|
for N, D, P1, P2, K, norm in product(*factors): |
|
x = torch.rand((N, P1, D), device=device, requires_grad=True) |
|
y = torch.rand((N, P2, D), device=device, requires_grad=True) |
|
lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device) |
|
lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device) |
|
|
|
x_csrc = x.clone().detach() |
|
x_csrc.requires_grad_(True) |
|
y_csrc = y.clone().detach() |
|
y_csrc.requires_grad_(True) |
|
|
|
|
|
out1 = self._knn_points_naive( |
|
x, y, lengths1=lengths1, lengths2=lengths2, K=K, norm=norm |
|
) |
|
out2 = knn_points( |
|
x_csrc, y_csrc, lengths1=lengths1, lengths2=lengths2, K=K, norm=norm |
|
) |
|
self.assertClose(out1[0], out2[0]) |
|
self.assertTrue(torch.all(out1[1] == out2[1])) |
|
|
|
|
|
grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device) |
|
loss1 = (out1.dists * grad_dist).sum() |
|
loss1.backward() |
|
loss2 = (out2.dists * grad_dist).sum() |
|
loss2.backward() |
|
|
|
self.assertClose(x_csrc.grad, x.grad, atol=5e-6) |
|
self.assertClose(y_csrc.grad, y.grad, atol=5e-6) |
|
|
|
def test_knn_vs_python_ragged_cpu(self): |
|
device = torch.device("cpu") |
|
self._knn_vs_python_ragged_helper(device) |
|
|
|
def test_knn_vs_python_ragged_cuda(self): |
|
device = get_random_cuda_device() |
|
self._knn_vs_python_ragged_helper(device) |
|
|
|
def test_knn_gather(self): |
|
device = get_random_cuda_device() |
|
N, P1, P2, K, D = 4, 16, 12, 8, 3 |
|
x = torch.rand((N, P1, D), device=device) |
|
y = torch.rand((N, P2, D), device=device) |
|
lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device) |
|
lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device) |
|
|
|
out = knn_points(x, y, lengths1=lengths1, lengths2=lengths2, K=K) |
|
y_nn = knn_gather(y, out.idx, lengths2) |
|
|
|
for n in range(N): |
|
for p1 in range(P1): |
|
for k in range(K): |
|
if k < lengths2[n]: |
|
self.assertClose(y_nn[n, p1, k], y[n, out.idx[n, p1, k]]) |
|
else: |
|
self.assertTrue(torch.all(y_nn[n, p1, k] == 0.0)) |
|
|
|
def test_knn_check_version(self): |
|
try: |
|
from pytorch3d._C import knn_check_version |
|
except ImportError: |
|
|
|
return |
|
for D in range(-10, 10): |
|
for K in range(-10, 20): |
|
v0 = True |
|
v1 = 1 <= D <= 32 |
|
v2 = 1 <= D <= 8 and 1 <= K <= 32 |
|
v3 = 1 <= D <= 8 and 1 <= K <= 4 |
|
all_expected = [v0, v1, v2, v3] |
|
for version in range(-10, 10): |
|
actual = knn_check_version(version, D, K) |
|
expected = False |
|
if 0 <= version < len(all_expected): |
|
expected = all_expected[version] |
|
self.assertEqual(actual, expected) |
|
|
|
def test_invalid_norm(self): |
|
device = get_random_cuda_device() |
|
N, P1, P2, K, D = 4, 16, 12, 8, 3 |
|
x = torch.rand((N, P1, D), device=device) |
|
y = torch.rand((N, P2, D), device=device) |
|
with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."): |
|
knn_points(x, y, K=K, norm=3) |
|
|
|
with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."): |
|
knn_points(x, y, K=K, norm=0) |
|
|
|
@staticmethod |
|
def knn_square(N: int, P1: int, P2: int, D: int, K: int, device: str): |
|
device = torch.device(device) |
|
pts1 = torch.randn(N, P1, D, device=device, requires_grad=True) |
|
pts2 = torch.randn(N, P2, D, device=device, requires_grad=True) |
|
grad_dists = torch.randn(N, P1, K, device=device) |
|
torch.cuda.synchronize() |
|
|
|
def output(): |
|
out = knn_points(pts1, pts2, K=K) |
|
loss = (out.dists * grad_dists).sum() |
|
loss.backward() |
|
torch.cuda.synchronize() |
|
|
|
return output |
|
|
|
@staticmethod |
|
def knn_ragged(N: int, P1: int, P2: int, D: int, K: int, device: str): |
|
device = torch.device(device) |
|
pts1 = torch.rand((N, P1, D), device=device, requires_grad=True) |
|
pts2 = torch.rand((N, P2, D), device=device, requires_grad=True) |
|
lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device) |
|
lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device) |
|
grad_dists = torch.randn(N, P1, K, device=device) |
|
torch.cuda.synchronize() |
|
|
|
def output(): |
|
out = knn_points(pts1, pts2, lengths1=lengths1, lengths2=lengths2, K=K) |
|
loss = (out.dists * grad_dists).sum() |
|
loss.backward() |
|
torch.cuda.synchronize() |
|
|
|
return output |
|
|