|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
from pytorch3d.ops.interp_face_attrs import ( |
|
interpolate_face_attributes, |
|
interpolate_face_attributes_python, |
|
) |
|
from pytorch3d.renderer.mesh import TexturesVertex |
|
from pytorch3d.renderer.mesh.rasterizer import Fragments |
|
from pytorch3d.structures import Meshes |
|
|
|
from .common_testing import get_random_cuda_device, TestCaseMixin |
|
|
|
|
|
class TestInterpolateFaceAttributes(TestCaseMixin, unittest.TestCase): |
|
def _test_interp_face_attrs(self, interp_fun, device): |
|
pix_to_face = [0, 2, -1, 0, 1, -1] |
|
barycentric_coords = [ |
|
[1.0, 0.0, 0.0], |
|
[0.0, 1.0, 0.0], |
|
[0.0, 0.0, 1.0], |
|
[0.5, 0.5, 0.0], |
|
[0.8, 0.0, 0.2], |
|
[0.25, 0.5, 0.25], |
|
] |
|
face_attrs = [ |
|
[[1, 2], [3, 4], [5, 6]], |
|
[[7, 8], [9, 10], [11, 12]], |
|
[[13, 14], [15, 16], [17, 18]], |
|
] |
|
pix_attrs = [ |
|
[1, 2], |
|
[15, 16], |
|
[0, 0], |
|
[2, 3], |
|
[0.8 * 7 + 0.2 * 11, 0.8 * 8 + 0.2 * 12], |
|
[0, 0], |
|
] |
|
N, H, W, K, D = 1, 2, 1, 3, 2 |
|
pix_to_face = torch.tensor(pix_to_face, dtype=torch.int64, device=device) |
|
pix_to_face = pix_to_face.view(N, H, W, K) |
|
barycentric_coords = torch.tensor( |
|
barycentric_coords, dtype=torch.float32, device=device |
|
) |
|
barycentric_coords = barycentric_coords.view(N, H, W, K, 3) |
|
face_attrs = torch.tensor(face_attrs, dtype=torch.float32, device=device) |
|
pix_attrs = torch.tensor(pix_attrs, dtype=torch.float32, device=device) |
|
pix_attrs = pix_attrs.view(N, H, W, K, D) |
|
|
|
args = (pix_to_face, barycentric_coords, face_attrs) |
|
pix_attrs_actual = interp_fun(*args) |
|
self.assertClose(pix_attrs_actual, pix_attrs) |
|
|
|
def test_python(self): |
|
device = torch.device("cuda:0") |
|
self._test_interp_face_attrs(interpolate_face_attributes_python, device) |
|
|
|
def test_cuda(self): |
|
device = torch.device("cuda:0") |
|
self._test_interp_face_attrs(interpolate_face_attributes, device) |
|
|
|
def test_python_vs_cuda(self): |
|
N, H, W, K = 2, 32, 32, 5 |
|
F = 1000 |
|
D = 3 |
|
device = get_random_cuda_device() |
|
torch.manual_seed(598) |
|
pix_to_face = torch.randint(-F, F, (N, H, W, K), device=device) |
|
barycentric_coords = torch.randn( |
|
N, H, W, K, 3, device=device, requires_grad=True |
|
) |
|
face_attrs = torch.randn(F, 3, D, device=device, requires_grad=True) |
|
grad_pix_attrs = torch.randn(N, H, W, K, D, device=device) |
|
args = (pix_to_face, barycentric_coords, face_attrs) |
|
|
|
|
|
pix_attrs_py = interpolate_face_attributes_python(*args) |
|
pix_attrs_py.backward(gradient=grad_pix_attrs) |
|
grad_bary_py = barycentric_coords.grad.clone() |
|
grad_face_attrs_py = face_attrs.grad.clone() |
|
|
|
|
|
barycentric_coords.grad.zero_() |
|
face_attrs.grad.zero_() |
|
|
|
|
|
pix_attrs_cu = interpolate_face_attributes(*args) |
|
pix_attrs_cu.backward(gradient=grad_pix_attrs) |
|
grad_bary_cu = barycentric_coords.grad.clone() |
|
grad_face_attrs_cu = face_attrs.grad.clone() |
|
|
|
|
|
self.assertClose(pix_attrs_py, pix_attrs_cu, rtol=2e-3) |
|
self.assertClose(grad_bary_py, grad_bary_cu, rtol=1e-4) |
|
self.assertClose(grad_face_attrs_py, grad_face_attrs_cu, rtol=1e-3) |
|
|
|
def test_interpolate_attributes(self): |
|
verts = torch.randn((4, 3), dtype=torch.float32) |
|
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64) |
|
vert_tex = torch.tensor( |
|
[[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32 |
|
) |
|
tex = TexturesVertex(verts_features=vert_tex[None, :]) |
|
mesh = Meshes(verts=[verts], faces=[faces], textures=tex) |
|
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2) |
|
barycentric_coords = torch.tensor( |
|
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32 |
|
).view(1, 1, 1, 2, -1) |
|
expected_vals = torch.tensor( |
|
[[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32 |
|
).view(1, 1, 1, 2, -1) |
|
fragments = Fragments( |
|
pix_to_face=pix_to_face, |
|
bary_coords=barycentric_coords, |
|
zbuf=torch.ones_like(pix_to_face), |
|
dists=torch.ones_like(pix_to_face), |
|
) |
|
|
|
verts_features_packed = mesh.textures.verts_features_packed() |
|
faces_verts_features = verts_features_packed[mesh.faces_packed()] |
|
|
|
texels = interpolate_face_attributes( |
|
fragments.pix_to_face, fragments.bary_coords, faces_verts_features |
|
) |
|
self.assertTrue(torch.allclose(texels, expected_vals[None, :])) |
|
|
|
def test_interpolate_attributes_grad(self): |
|
verts = torch.randn((4, 3), dtype=torch.float32) |
|
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64) |
|
vert_tex = torch.tensor( |
|
[[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], |
|
dtype=torch.float32, |
|
requires_grad=True, |
|
) |
|
tex = TexturesVertex(verts_features=vert_tex[None, :]) |
|
mesh = Meshes(verts=[verts], faces=[faces], textures=tex) |
|
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2) |
|
barycentric_coords = torch.tensor( |
|
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32 |
|
).view(1, 1, 1, 2, -1) |
|
fragments = Fragments( |
|
pix_to_face=pix_to_face, |
|
bary_coords=barycentric_coords, |
|
zbuf=torch.ones_like(pix_to_face), |
|
dists=torch.ones_like(pix_to_face), |
|
) |
|
grad_vert_tex = torch.tensor( |
|
[[0.3, 0.3, 0.3], [0.9, 0.9, 0.9], [0.5, 0.5, 0.5], [0.3, 0.3, 0.3]], |
|
dtype=torch.float32, |
|
) |
|
verts_features_packed = mesh.textures.verts_features_packed() |
|
faces_verts_features = verts_features_packed[mesh.faces_packed()] |
|
|
|
texels = interpolate_face_attributes( |
|
fragments.pix_to_face, fragments.bary_coords, faces_verts_features |
|
) |
|
texels.sum().backward() |
|
self.assertTrue(hasattr(vert_tex, "grad")) |
|
self.assertTrue(torch.allclose(vert_tex.grad, grad_vert_tex[None, :])) |
|
|
|
def test_interpolate_face_attributes_fail(self): |
|
|
|
|
|
face_attributes = torch.ones(1, 4, 3) |
|
pix_to_face = torch.ones((1, 1, 1, 1)) |
|
fragments = Fragments( |
|
pix_to_face=pix_to_face, |
|
bary_coords=pix_to_face[..., None].expand(-1, -1, -1, -1, 3), |
|
zbuf=pix_to_face, |
|
dists=pix_to_face, |
|
) |
|
with self.assertRaises(ValueError): |
|
interpolate_face_attributes( |
|
fragments.pix_to_face, fragments.bary_coords, face_attributes |
|
) |
|
|
|
|
|
pix_to_face = torch.ones((1, 1, 1, 1, 3)) |
|
fragments = Fragments( |
|
pix_to_face=pix_to_face, |
|
bary_coords=pix_to_face, |
|
zbuf=pix_to_face, |
|
dists=pix_to_face, |
|
) |
|
with self.assertRaises(ValueError): |
|
interpolate_face_attributes( |
|
fragments.pix_to_face, fragments.bary_coords, face_attributes |
|
) |
|
|