|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from pytorch3d.common.workaround import _safe_det_3x3 |
|
|
|
from .common_testing import TestCaseMixin |
|
|
|
|
|
class TestSafeDet3x3(TestCaseMixin, unittest.TestCase): |
|
def setUp(self) -> None: |
|
super().setUp() |
|
torch.manual_seed(42) |
|
np.random.seed(42) |
|
|
|
def _test_det_3x3(self, batch_size, device): |
|
t = torch.rand((batch_size, 3, 3), dtype=torch.float32, device=device) |
|
actual_det = _safe_det_3x3(t) |
|
expected_det = t.det() |
|
self.assertClose(actual_det, expected_det, atol=1e-7) |
|
|
|
def test_empty_batch(self): |
|
self._test_det_3x3(0, torch.device("cpu")) |
|
self._test_det_3x3(0, torch.device("cuda:0")) |
|
|
|
def test_manual(self): |
|
t = torch.Tensor( |
|
[ |
|
[[1, 0, 0], [0, 1, 0], [0, 0, 1]], |
|
[[2, -5, 3], [0, 7, -2], [-1, 4, 1]], |
|
[[6, 1, 1], [4, -2, 5], [2, 8, 7]], |
|
] |
|
).to(dtype=torch.float32) |
|
expected_det = torch.Tensor([1, 41, -306]).to(dtype=torch.float32) |
|
self.assertClose(_safe_det_3x3(t), expected_det) |
|
|
|
device_cuda = torch.device("cuda:0") |
|
self.assertClose( |
|
_safe_det_3x3(t.to(device=device_cuda)), expected_det.to(device=device_cuda) |
|
) |
|
|
|
def test_regression(self): |
|
tries = 32 |
|
device_cpu = torch.device("cpu") |
|
device_cuda = torch.device("cuda:0") |
|
batch_sizes = np.random.randint(low=1, high=128, size=tries) |
|
|
|
for batch_size in batch_sizes: |
|
self._test_det_3x3(batch_size, device_cpu) |
|
self._test_det_3x3(batch_size, device_cuda) |
|
|