|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from .common_testing import TestCaseMixin |
|
|
|
|
|
class TestOpsUtils(TestCaseMixin, unittest.TestCase): |
|
def setUp(self) -> None: |
|
super().setUp() |
|
torch.manual_seed(42) |
|
np.random.seed(42) |
|
|
|
def test_all_close(self): |
|
device = torch.device("cuda:0") |
|
n_points = 20 |
|
noise_std = 1e-3 |
|
msg = "tratata" |
|
|
|
|
|
x = torch.rand(n_points, 3, device=device) |
|
x_noise = x + noise_std * torch.rand(n_points, 3, device=device) |
|
assert torch.allclose(x, x_noise, atol=10 * noise_std) |
|
assert not torch.allclose(x, x_noise, atol=0.1 * noise_std) |
|
self.assertClose(x, x_noise, atol=10 * noise_std) |
|
with self.assertRaises(AssertionError) as context: |
|
self.assertClose(x, x_noise, atol=0.1 * noise_std, msg=msg) |
|
self.assertTrue(msg in str(context.exception)) |
|
|
|
|
|
def to_np(t): |
|
return t.data.cpu().numpy() |
|
|
|
self.assertClose(to_np(x), to_np(x_noise), atol=10 * noise_std) |
|
with self.assertRaises(AssertionError) as context: |
|
self.assertClose(to_np(x), to_np(x_noise), atol=0.1 * noise_std, msg=msg) |
|
self.assertIn(msg, str(context.exception)) |
|
self.assertIn("Not close", str(context.exception)) |
|
|
|
|
|
assert torch.allclose(x, x_noise, rtol=100 * noise_std) |
|
assert not torch.allclose(x, x_noise, rtol=noise_std) |
|
self.assertClose(x, x_noise, rtol=100 * noise_std) |
|
with self.assertRaises(AssertionError) as context: |
|
self.assertClose(x, x_noise, rtol=noise_std, msg=msg) |
|
self.assertTrue(msg in str(context.exception)) |
|
|
|
|
|
|
|
x_noise[:, 0] = x_noise[:, 0] - x[:, 0] |
|
x[:, 0] = 0.0 |
|
assert not torch.allclose(x, x_noise, rtol=100 * noise_std) |
|
self.assertNormsClose( |
|
x, x_noise, rtol=100 * noise_std, norm_fn=lambda t: t.norm(dim=-1) |
|
) |
|
|