|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from pytorch3d.ops import eyes |
|
from pytorch3d.renderer.points.pulsar import Renderer as PulsarRenderer |
|
from pytorch3d.transforms import so3_exp_map, so3_log_map |
|
from pytorch3d.utils import ( |
|
cameras_from_opencv_projection, |
|
opencv_from_cameras_projection, |
|
pulsar_from_opencv_projection, |
|
) |
|
|
|
from .common_testing import get_tests_dir, TestCaseMixin |
|
|
|
|
|
DATA_DIR = get_tests_dir() / "data" |
|
|
|
|
|
def cv2_project_points(pts, rvec, tvec, camera_matrix): |
|
""" |
|
Reproduces the `cv2.projectPoints` function from OpenCV using PyTorch. |
|
""" |
|
R = so3_exp_map(rvec) |
|
pts_proj_3d = ( |
|
camera_matrix.bmm(R.bmm(pts.permute(0, 2, 1)) + tvec[:, :, None]) |
|
).permute(0, 2, 1) |
|
depth = pts_proj_3d[..., 2:] |
|
pts_proj_2d = pts_proj_3d[..., :2] / depth |
|
return pts_proj_2d |
|
|
|
|
|
class TestCameraConversions(TestCaseMixin, unittest.TestCase): |
|
def setUp(self) -> None: |
|
super().setUp() |
|
torch.manual_seed(42) |
|
np.random.seed(42) |
|
|
|
def test_cv2_project_points(self): |
|
""" |
|
Tests that the local implementation of cv2_project_points gives the same |
|
restults OpenCV's `cv2.projectPoints`. The check is done against a set |
|
of precomputed results `cv_project_points_precomputed`. |
|
""" |
|
with open(DATA_DIR / "cv_project_points_precomputed.json", "r") as f: |
|
cv_project_points_precomputed = json.load(f) |
|
|
|
for test_case in cv_project_points_precomputed: |
|
_pts_proj = cv2_project_points( |
|
**{ |
|
k: torch.tensor(test_case[k])[None] |
|
for k in ("pts", "rvec", "tvec", "camera_matrix") |
|
} |
|
) |
|
pts_proj = torch.tensor(test_case["pts_proj"])[None] |
|
self.assertClose(_pts_proj, pts_proj, atol=1e-4) |
|
|
|
def test_opencv_conversion(self): |
|
""" |
|
Tests that the cameras converted from opencv to pytorch3d convention |
|
return correct projections of random 3D points. The check is done |
|
against a set of results precomuted using `cv2.projectPoints` function. |
|
""" |
|
device = torch.device("cuda:0") |
|
image_size = [[480, 640]] * 4 |
|
R = [ |
|
[ |
|
[1.0, 0.0, 0.0], |
|
[0.0, 1.0, 0.0], |
|
[0.0, 0.0, 1.0], |
|
], |
|
[ |
|
[1.0, 0.0, 0.0], |
|
[0.0, 0.0, -1.0], |
|
[0.0, 1.0, 0.0], |
|
], |
|
[ |
|
[0.0, 0.0, 1.0], |
|
[1.0, 0.0, 0.0], |
|
[0.0, 1.0, 0.0], |
|
], |
|
[ |
|
[0.0, 0.0, 1.0], |
|
[1.0, 0.0, 0.0], |
|
[0.0, 1.0, 0.0], |
|
], |
|
] |
|
|
|
tvec = [ |
|
[0.0, 0.0, 3.0], |
|
[0.3, -0.3, 3.0], |
|
[-0.15, 0.1, 4.0], |
|
[0.0, 0.0, 4.0], |
|
] |
|
focal_length = [ |
|
[100.0, 100.0], |
|
[115.0, 115.0], |
|
[105.0, 105.0], |
|
[120.0, 120.0], |
|
] |
|
|
|
|
|
|
|
principal_point = [ |
|
[240, 320], |
|
[240.5, 320.3], |
|
[241, 318], |
|
[242, 322], |
|
] |
|
|
|
principal_point, focal_length, R, tvec, image_size = [ |
|
torch.tensor(x, device=device) |
|
for x in (principal_point, focal_length, R, tvec, image_size) |
|
] |
|
camera_matrix = eyes(dim=3, N=4, device=device) |
|
camera_matrix[:, 0, 0], camera_matrix[:, 1, 1] = ( |
|
focal_length[:, 0], |
|
focal_length[:, 1], |
|
) |
|
camera_matrix[:, :2, 2] = principal_point |
|
|
|
pts = torch.nn.functional.normalize( |
|
torch.randn(4, 1000, 3, device=device), dim=-1 |
|
) |
|
|
|
|
|
rvec = so3_log_map(R) |
|
pts_proj_opencv = cv2_project_points(pts, rvec, tvec, camera_matrix) |
|
|
|
|
|
cameras_opencv_to_pytorch3d = cameras_from_opencv_projection( |
|
R, tvec, camera_matrix, image_size |
|
) |
|
self.assertEqual(cameras_opencv_to_pytorch3d.device, device) |
|
|
|
|
|
pts_proj_pytorch3d_screen = cameras_opencv_to_pytorch3d.transform_points_screen( |
|
pts |
|
)[..., :2] |
|
|
|
|
|
self.assertClose(pts_proj_opencv, pts_proj_pytorch3d_screen, atol=1e-5) |
|
|
|
|
|
R_i, tvec_i, camera_matrix_i = opencv_from_cameras_projection( |
|
cameras_opencv_to_pytorch3d, image_size |
|
) |
|
self.assertClose(R, R_i) |
|
self.assertClose(tvec, tvec_i) |
|
self.assertClose(camera_matrix, camera_matrix_i) |
|
|
|
def test_pulsar_conversion(self): |
|
""" |
|
Tests that the cameras converted from opencv to pulsar convention |
|
return correct projections of random 3D points. The check is done |
|
against a set of results precomputed using `cv2.projectPoints` function. |
|
""" |
|
image_size = [[480, 640]] |
|
R = [ |
|
[ |
|
[1.0, 0.0, 0.0], |
|
[0.0, 1.0, 0.0], |
|
[0.0, 0.0, 1.0], |
|
], |
|
[ |
|
[0.1968, -0.6663, -0.7192], |
|
[0.7138, -0.4055, 0.5710], |
|
[-0.6721, -0.6258, 0.3959], |
|
], |
|
] |
|
tvec = [ |
|
[10.0, 10.0, 3.0], |
|
[-0.0, -0.0, 20.0], |
|
] |
|
focal_length = [ |
|
[100.0, 100.0], |
|
[10.0, 10.0], |
|
] |
|
principal_point = [ |
|
[320, 240], |
|
[320, 240], |
|
] |
|
|
|
principal_point, focal_length, R, tvec, image_size = [ |
|
torch.FloatTensor(x) |
|
for x in (principal_point, focal_length, R, tvec, image_size) |
|
] |
|
camera_matrix = eyes(dim=3, N=2) |
|
camera_matrix[:, 0, 0] = focal_length[:, 0] |
|
camera_matrix[:, 1, 1] = focal_length[:, 1] |
|
camera_matrix[:, :2, 2] = principal_point |
|
rvec = so3_log_map(R) |
|
pts = torch.tensor( |
|
[[[0.0, 0.0, 120.0]], [[0.0, 0.0, 120.0]]], dtype=torch.float32 |
|
) |
|
radii = torch.tensor([[1e-5], [1e-5]], dtype=torch.float32) |
|
col = torch.zeros((2, 1, 1), dtype=torch.float32) |
|
|
|
|
|
pts_proj_opencv = cv2_project_points(pts, rvec, tvec, camera_matrix) |
|
pulsar_cam = pulsar_from_opencv_projection( |
|
R, tvec, camera_matrix, image_size, znear=100.0 |
|
) |
|
pulsar_rend = PulsarRenderer( |
|
640, 480, 1, right_handed_system=False, n_channels=1 |
|
) |
|
rendered = torch.flip( |
|
pulsar_rend( |
|
pts, |
|
col, |
|
radii, |
|
pulsar_cam, |
|
1e-5, |
|
max_depth=150.0, |
|
min_depth=100.0, |
|
), |
|
dims=(1,), |
|
) |
|
for batch_id in range(2): |
|
point_pos = torch.where(rendered[batch_id] == rendered[batch_id].min()) |
|
point_pos = point_pos[1][0], point_pos[0][0] |
|
self.assertLess( |
|
torch.abs(point_pos[0] - pts_proj_opencv[batch_id, 0, 0]), 2 |
|
) |
|
self.assertLess( |
|
torch.abs(point_pos[1] - pts_proj_opencv[batch_id, 0, 1]), 2 |
|
) |
|
|