|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
from pytorch3d.renderer.blending import ( |
|
BlendParams, |
|
hard_rgb_blend, |
|
sigmoid_alpha_blend, |
|
softmax_rgb_blend, |
|
) |
|
from pytorch3d.renderer.cameras import FoVPerspectiveCameras |
|
from pytorch3d.renderer.mesh.rasterizer import Fragments |
|
from pytorch3d.renderer.splatter_blend import SplatterBlender |
|
|
|
from .common_testing import TestCaseMixin |
|
|
|
|
|
def sigmoid_blend_naive_loop(colors, fragments, blend_params): |
|
""" |
|
Naive for loop based implementation of distance based alpha calculation. |
|
Only for test purposes. |
|
""" |
|
pix_to_face = fragments.pix_to_face |
|
dists = fragments.dists |
|
sigma = blend_params.sigma |
|
|
|
N, H, W, K = pix_to_face.shape |
|
device = pix_to_face.device |
|
pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device) |
|
|
|
for n in range(N): |
|
for h in range(H): |
|
for w in range(W): |
|
alpha = 1.0 |
|
|
|
|
|
|
|
for k in range(K): |
|
if pix_to_face[n, h, w, k] >= 0: |
|
prob = torch.sigmoid(-dists[n, h, w, k] / sigma) |
|
alpha *= 1.0 - prob |
|
pixel_colors[n, h, w, :3] = colors[n, h, w, 0, :] |
|
pixel_colors[n, h, w, 3] = 1.0 - alpha |
|
|
|
return pixel_colors |
|
|
|
|
|
def sigmoid_alpha_blend_vectorized(colors, fragments, blend_params) -> torch.Tensor: |
|
N, H, W, K = fragments.pix_to_face.shape |
|
pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=colors.device) |
|
mask = fragments.pix_to_face >= 0 |
|
prob = torch.sigmoid(-fragments.dists / blend_params.sigma) * mask |
|
pixel_colors[..., :3] = colors[..., 0, :] |
|
pixel_colors[..., 3] = 1.0 - torch.prod((1.0 - prob), dim=-1) |
|
return pixel_colors |
|
|
|
|
|
def sigmoid_blend_naive_loop_backward(grad_images, images, fragments, blend_params): |
|
pix_to_face = fragments.pix_to_face |
|
dists = fragments.dists |
|
sigma = blend_params.sigma |
|
|
|
N, H, W, K = pix_to_face.shape |
|
device = pix_to_face.device |
|
grad_distances = torch.zeros((N, H, W, K), dtype=dists.dtype, device=device) |
|
|
|
for n in range(N): |
|
for h in range(H): |
|
for w in range(W): |
|
alpha = 1.0 - images[n, h, w, 3] |
|
grad_alpha = grad_images[n, h, w, 3] |
|
|
|
|
|
for k in range(K): |
|
if pix_to_face[n, h, w, k] >= 0: |
|
prob = torch.sigmoid(-dists[n, h, w, k] / sigma) |
|
grad_distances[n, h, w, k] = ( |
|
grad_alpha * (-1.0 / sigma) * prob * alpha |
|
) |
|
return grad_distances |
|
|
|
|
|
def softmax_blend_naive(colors, fragments, blend_params): |
|
""" |
|
Naive for loop based implementation of softmax blending. |
|
Only for test purposes. |
|
""" |
|
pix_to_face = fragments.pix_to_face |
|
dists = fragments.dists |
|
zbuf = fragments.zbuf |
|
sigma = blend_params.sigma |
|
gamma = blend_params.gamma |
|
|
|
N, H, W, K = pix_to_face.shape |
|
device = pix_to_face.device |
|
pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device) |
|
|
|
|
|
zfar = 100.0 |
|
znear = 1.0 |
|
eps = 1e-10 |
|
|
|
bk_color = blend_params.background_color |
|
if not torch.is_tensor(bk_color): |
|
bk_color = torch.tensor(bk_color, dtype=colors.dtype, device=device) |
|
|
|
for n in range(N): |
|
for h in range(H): |
|
for w in range(W): |
|
alpha = 1.0 |
|
weights_k = torch.zeros(K, device=device) |
|
zmax = torch.tensor(0.0, device=device) |
|
|
|
|
|
for k in range(K): |
|
if pix_to_face[n, h, w, k] >= 0: |
|
zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear) |
|
if zinv > zmax: |
|
zmax = zinv |
|
|
|
|
|
|
|
for k in range(K): |
|
if pix_to_face[n, h, w, k] >= 0: |
|
zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear) |
|
prob = torch.sigmoid(-dists[n, h, w, k] / sigma) |
|
alpha *= 1.0 - prob |
|
weights_k[k] = prob * torch.exp((zinv - zmax) / gamma) |
|
|
|
|
|
delta = torch.exp((eps - zmax) / blend_params.gamma).clamp(min=eps) |
|
delta = delta.to(device) |
|
denom = weights_k.sum() + delta |
|
cols = (weights_k[..., None] * colors[n, h, w, :, :]).sum(dim=0) |
|
pixel_colors[n, h, w, :3] = cols + delta * bk_color |
|
pixel_colors[n, h, w, :3] /= denom |
|
pixel_colors[n, h, w, 3] = 1.0 - alpha |
|
|
|
return pixel_colors |
|
|
|
|
|
class TestBlending(TestCaseMixin, unittest.TestCase): |
|
def setUp(self) -> None: |
|
torch.manual_seed(42) |
|
|
|
def _compare_impls( |
|
self, fn1, fn2, args1, args2, grad_var1=None, grad_var2=None, compare_grads=True |
|
): |
|
out1 = fn1(*args1) |
|
out2 = fn2(*args2) |
|
self.assertClose(out1.cpu()[..., 3], out2.cpu()[..., 3], atol=1e-7) |
|
|
|
|
|
if not compare_grads: |
|
return |
|
|
|
grad_out = torch.randn_like(out1) |
|
(out1 * grad_out).sum().backward() |
|
self.assertTrue(hasattr(grad_var1, "grad")) |
|
|
|
(out2 * grad_out).sum().backward() |
|
self.assertTrue(hasattr(grad_var2, "grad")) |
|
|
|
self.assertClose(grad_var1.grad.cpu(), grad_var2.grad.cpu(), atol=2e-5) |
|
|
|
def test_hard_rgb_blend(self): |
|
N, H, W, K = 5, 10, 10, 20 |
|
pix_to_face = torch.randint(low=-1, high=100, size=(N, H, W, K)) |
|
bary_coords = torch.ones((N, H, W, K, 3)) |
|
fragments = Fragments( |
|
pix_to_face=pix_to_face, |
|
bary_coords=bary_coords, |
|
zbuf=pix_to_face, |
|
dists=pix_to_face, |
|
) |
|
colors = torch.randn((N, H, W, K, 3)) |
|
blend_params = BlendParams(1e-4, 1e-4, (0.5, 0.5, 1)) |
|
images = hard_rgb_blend(colors, fragments, blend_params) |
|
|
|
|
|
is_foreground = pix_to_face[..., 0] >= 0 |
|
self.assertClose(images[is_foreground][:, :3], colors[is_foreground][..., 0, :]) |
|
|
|
|
|
for i in range(3): |
|
channel_color = blend_params.background_color[i] |
|
self.assertTrue(images[~is_foreground][..., i].eq(channel_color).all()) |
|
|
|
|
|
self.assertClose(images[..., 3], (pix_to_face[..., 0] >= 0).float()) |
|
|
|
def test_sigmoid_alpha_blend_manual_gradients(self): |
|
|
|
torch.manual_seed(231) |
|
F = 32 |
|
|
|
N, S, K = 2, 3, 2 |
|
device = torch.device("cuda") |
|
pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1 |
|
colors = torch.randn((N, S, S, K, 3), device=device) |
|
empty = torch.tensor([], device=device) |
|
|
|
|
|
|
|
random_sign_flip = torch.rand((N, S, S, K)) |
|
random_sign_flip[random_sign_flip > 0.5] *= -1.0 |
|
dists = torch.randn(size=(N, S, S, K), requires_grad=True, device=device) |
|
fragments = Fragments( |
|
pix_to_face=pix_to_face, |
|
bary_coords=empty, |
|
zbuf=empty, |
|
dists=dists, |
|
) |
|
blend_params = BlendParams(sigma=1e-3) |
|
pix_cols = sigmoid_blend_naive_loop(colors, fragments, blend_params) |
|
grad_out = torch.randn_like(pix_cols) |
|
|
|
|
|
pix_cols.backward(grad_out) |
|
grad_dists = sigmoid_blend_naive_loop_backward( |
|
grad_out, pix_cols, fragments, blend_params |
|
) |
|
self.assertTrue(torch.allclose(dists.grad, grad_dists, atol=1e-7)) |
|
|
|
def test_sigmoid_alpha_blend_python(self): |
|
""" |
|
Test outputs of python tensorised function and python loop |
|
""" |
|
|
|
|
|
torch.manual_seed(231) |
|
F = 32 |
|
|
|
N, S, K = 1, 4, 1 |
|
device = torch.device("cuda") |
|
pix_to_face = torch.randint(low=-1, high=F, size=(N, S, S, K), device=device) |
|
colors = torch.randn((N, S, S, K, 3), device=device) |
|
empty = torch.tensor([], device=device) |
|
|
|
dists1 = torch.randn(size=(N, S, S, K), device=device) |
|
dists2 = dists1.clone() |
|
dists1.requires_grad = True |
|
dists2.requires_grad = True |
|
|
|
fragments1 = Fragments( |
|
pix_to_face=pix_to_face, |
|
bary_coords=empty, |
|
zbuf=empty, |
|
dists=dists1, |
|
) |
|
fragments2 = Fragments( |
|
pix_to_face=pix_to_face, |
|
bary_coords=empty, |
|
zbuf=empty, |
|
dists=dists2, |
|
) |
|
|
|
blend_params = BlendParams(sigma=1e-2) |
|
args1 = (colors, fragments1, blend_params) |
|
args2 = (colors, fragments2, blend_params) |
|
|
|
self._compare_impls( |
|
sigmoid_alpha_blend, |
|
sigmoid_alpha_blend_vectorized, |
|
args1, |
|
args2, |
|
dists1, |
|
dists2, |
|
compare_grads=True, |
|
) |
|
|
|
def test_softmax_rgb_blend(self): |
|
|
|
|
|
N, S, K = 1, 8, 2 |
|
device = torch.device("cuda") |
|
pix_to_face = torch.full( |
|
(N, S, S, K), fill_value=-1, dtype=torch.int64, device=device |
|
) |
|
h = int(S / 2) |
|
pix_to_face_full = torch.randint( |
|
size=(N, h, h, K), low=0, high=100, device=device |
|
) |
|
s = int(S / 4) |
|
e = int(0.75 * S) |
|
pix_to_face[:, s:e, s:e, :] = pix_to_face_full |
|
empty = torch.tensor([], device=device) |
|
|
|
random_sign_flip = torch.rand((N, S, S, K), device=device) |
|
random_sign_flip[random_sign_flip > 0.5] *= -1.0 |
|
zbuf1 = torch.randn(size=(N, S, S, K), device=device) |
|
|
|
|
|
|
|
dists1 = torch.randn(size=(N, S, S, K), device=device) * random_sign_flip |
|
dists2 = dists1.clone() |
|
zbuf2 = zbuf1.clone() |
|
dists1.requires_grad = True |
|
dists2.requires_grad = True |
|
colors = torch.randn((N, S, S, K, 3), device=device) |
|
fragments1 = Fragments( |
|
pix_to_face=pix_to_face, |
|
bary_coords=empty, |
|
zbuf=zbuf1, |
|
dists=dists1, |
|
) |
|
fragments2 = Fragments( |
|
pix_to_face=pix_to_face, |
|
bary_coords=empty, |
|
zbuf=zbuf2, |
|
dists=dists2, |
|
) |
|
|
|
blend_params = BlendParams(sigma=1e-3) |
|
args1 = (colors, fragments1, blend_params) |
|
args2 = (colors, fragments2, blend_params) |
|
self._compare_impls( |
|
softmax_rgb_blend, |
|
softmax_blend_naive, |
|
args1, |
|
args2, |
|
dists1, |
|
dists2, |
|
compare_grads=True, |
|
) |
|
|
|
@staticmethod |
|
def bm_sigmoid_alpha_blending( |
|
num_meshes: int = 16, |
|
image_size: int = 128, |
|
faces_per_pixel: int = 100, |
|
device="cuda", |
|
backend: str = "pytorch", |
|
): |
|
device = torch.device(device) |
|
torch.manual_seed(231) |
|
|
|
|
|
N, S, K = num_meshes, image_size, faces_per_pixel |
|
F = 32 |
|
pix_to_face = torch.randint( |
|
low=-1, high=F + 1, size=(N, S, S, K), device=device |
|
) |
|
colors = torch.randn((N, S, S, K, 3), device=device) |
|
empty = torch.tensor([], device=device) |
|
|
|
dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device) |
|
fragments = Fragments( |
|
pix_to_face=pix_to_face, |
|
bary_coords=empty, |
|
zbuf=empty, |
|
dists=dists1, |
|
) |
|
blend_params = BlendParams(sigma=1e-3) |
|
|
|
blend_fn = ( |
|
sigmoid_alpha_blend_vectorized |
|
if backend == "pytorch" |
|
else sigmoid_alpha_blend |
|
) |
|
|
|
torch.cuda.synchronize() |
|
|
|
def fn(): |
|
|
|
images = blend_fn(colors, fragments, blend_params) |
|
images.sum().backward() |
|
torch.cuda.synchronize() |
|
|
|
return fn |
|
|
|
@staticmethod |
|
def bm_softmax_blending( |
|
num_meshes: int = 16, |
|
image_size: int = 128, |
|
faces_per_pixel: int = 100, |
|
device: str = "cpu", |
|
backend: str = "pytorch", |
|
): |
|
if torch.cuda.is_available() and "cuda:" in device: |
|
|
|
torch.cuda.set_device(device) |
|
|
|
device = torch.device(device) |
|
torch.manual_seed(231) |
|
|
|
|
|
N, S, K = num_meshes, image_size, faces_per_pixel |
|
F = 32 |
|
pix_to_face = torch.randint( |
|
low=-1, high=F + 1, size=(N, S, S, K), device=device |
|
) |
|
colors = torch.randn((N, S, S, K, 3), device=device) |
|
empty = torch.tensor([], device=device) |
|
|
|
dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device) |
|
zbuf = torch.randn(size=(N, S, S, K), requires_grad=True, device=device) |
|
fragments = Fragments( |
|
pix_to_face=pix_to_face, bary_coords=empty, zbuf=zbuf, dists=dists1 |
|
) |
|
blend_params = BlendParams(sigma=1e-3) |
|
|
|
torch.cuda.synchronize() |
|
|
|
def fn(): |
|
|
|
images = softmax_rgb_blend(colors, fragments, blend_params) |
|
images.sum().backward() |
|
torch.cuda.synchronize() |
|
|
|
return fn |
|
|
|
@staticmethod |
|
def bm_splatter_blending( |
|
num_meshes: int = 16, |
|
image_size: int = 128, |
|
faces_per_pixel: int = 2, |
|
use_jit: bool = False, |
|
device: str = "cpu", |
|
backend: str = "pytorch", |
|
): |
|
if torch.cuda.is_available() and "cuda:" in device: |
|
|
|
torch.cuda.set_device(device) |
|
|
|
device = torch.device(device) |
|
torch.manual_seed(231) |
|
|
|
|
|
N, S, K = num_meshes, image_size, faces_per_pixel |
|
F = 32 |
|
|
|
pixel_coords_camera = torch.randn( |
|
(N, S, S, K, 3), device=device, requires_grad=True |
|
) |
|
cameras = FoVPerspectiveCameras(device=device) |
|
colors = torch.randn((N, S, S, K, 3), device=device) |
|
background_mask = torch.randint( |
|
low=-1, high=F + 1, size=(N, S, S, K), device=device |
|
) |
|
background_mask = torch.full((N, S, S, K), False, dtype=bool, device=device) |
|
blend_params = BlendParams(sigma=0.5) |
|
|
|
torch.cuda.synchronize() |
|
splatter_blender = SplatterBlender((N, S, S, K), colors.device) |
|
|
|
def fn(): |
|
|
|
images = splatter_blender( |
|
colors, |
|
pixel_coords_camera, |
|
cameras, |
|
background_mask, |
|
blend_params, |
|
) |
|
images.sum().backward() |
|
torch.cuda.synchronize() |
|
|
|
return fn |
|
|
|
def test_blend_params(self): |
|
"""Test color parameter of BlendParams(). |
|
Assert passed value overrides default value. |
|
""" |
|
bp_default = BlendParams() |
|
bp_new = BlendParams(background_color=(0.5, 0.5, 0.5)) |
|
self.assertEqual(bp_new.background_color, (0.5, 0.5, 0.5)) |
|
self.assertEqual(bp_default.background_color, (1.0, 1.0, 1.0)) |
|
|