|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
from collections import defaultdict |
|
from dataclasses import dataclass |
|
from itertools import product |
|
|
|
import numpy as np |
|
|
|
import torch |
|
from pytorch3d.implicitron.dataset.data_loader_map_provider import ( |
|
DoublePoolBatchSampler, |
|
) |
|
|
|
from pytorch3d.implicitron.dataset.dataset_base import DatasetBase |
|
from pytorch3d.implicitron.dataset.frame_data import FrameData |
|
from pytorch3d.implicitron.dataset.scene_batch_sampler import SceneBatchSampler |
|
|
|
|
|
@dataclass |
|
class MockFrameAnnotation: |
|
frame_number: int |
|
sequence_name: str = "sequence" |
|
frame_timestamp: float = 0.0 |
|
|
|
|
|
class MockDataset(DatasetBase): |
|
def __init__(self, num_seq, max_frame_gap=1): |
|
""" |
|
Makes a gap of max_frame_gap frame numbers in the middle of each sequence |
|
""" |
|
self.seq_annots = {f"seq_{i}": None for i in range(num_seq)} |
|
self._seq_to_idx = { |
|
f"seq_{i}": list(range(i * 10, i * 10 + 10)) for i in range(num_seq) |
|
} |
|
|
|
|
|
|
|
frame_nos = list(range(5)) + list(range(4 + max_frame_gap, 9 + max_frame_gap)) |
|
self.frame_annots = [ |
|
{"frame_annotation": MockFrameAnnotation(no)} for no in frame_nos * num_seq |
|
] |
|
for seq_name, idx in self._seq_to_idx.items(): |
|
for i in idx: |
|
self.frame_annots[i]["frame_annotation"].sequence_name = seq_name |
|
|
|
def get_frame_numbers_and_timestamps(self, idxs, subset_filter=None): |
|
assert subset_filter is None |
|
out = [] |
|
for idx in idxs: |
|
frame_annotation = self.frame_annots[idx]["frame_annotation"] |
|
out.append( |
|
(frame_annotation.frame_number, frame_annotation.frame_timestamp) |
|
) |
|
return out |
|
|
|
def __getitem__(self, index: int): |
|
fa = self.frame_annots[index]["frame_annotation"] |
|
fd = FrameData( |
|
sequence_name=fa.sequence_name, |
|
sequence_category="default_category", |
|
frame_number=torch.LongTensor([fa.frame_number]), |
|
frame_timestamp=torch.LongTensor([fa.frame_timestamp]), |
|
) |
|
return fd |
|
|
|
|
|
class TestSceneBatchSampler(unittest.TestCase): |
|
def setUp(self): |
|
np.random.seed(42) |
|
self.dataset_overfit = MockDataset(1) |
|
|
|
def test_overfit(self): |
|
num_batches = 3 |
|
batch_size = 10 |
|
sampler = SceneBatchSampler( |
|
self.dataset_overfit, |
|
batch_size=batch_size, |
|
num_batches=num_batches, |
|
images_per_seq_options=[10], |
|
) |
|
|
|
self.assertEqual(len(sampler), num_batches) |
|
|
|
it = iter(sampler) |
|
for _ in range(num_batches): |
|
batch = next(it) |
|
self.assertIsNotNone(batch) |
|
self.assertEqual(len(batch), batch_size) |
|
self.assertTrue(all(idx // 10 == 0 for idx in batch)) |
|
|
|
with self.assertRaises(StopIteration): |
|
batch = next(it) |
|
|
|
def test_multiseq(self): |
|
for ips_options in [[10], [2], [3], [2, 3, 4]]: |
|
for sample_consecutive_frames in [True, False]: |
|
for consecutive_frames_max_gap in [0, 1, 3]: |
|
self._test_multiseq_flavour( |
|
ips_options, |
|
sample_consecutive_frames, |
|
consecutive_frames_max_gap, |
|
) |
|
|
|
def test_multiseq_gaps(self): |
|
num_batches = 16 |
|
batch_size = 10 |
|
dataset_multiseq = MockDataset(5, max_frame_gap=3) |
|
for ips_options in [[10], [2], [3], [2, 3, 4]]: |
|
debug_info = f" Images per sequence: {ips_options}." |
|
|
|
sampler = SceneBatchSampler( |
|
dataset_multiseq, |
|
batch_size=batch_size, |
|
num_batches=num_batches, |
|
images_per_seq_options=ips_options, |
|
sample_consecutive_frames=True, |
|
consecutive_frames_max_gap=1, |
|
) |
|
|
|
self.assertEqual(len(sampler), num_batches, msg=debug_info) |
|
|
|
it = iter(sampler) |
|
for _ in range(num_batches): |
|
batch = next(it) |
|
self.assertIsNotNone(batch, "batch is None in" + debug_info) |
|
if max(ips_options) > 5: |
|
|
|
self.assertEqual(len(batch), 5, msg=debug_info) |
|
else: |
|
|
|
self.assertEqual(len(batch), batch_size, msg=debug_info) |
|
|
|
self._check_frames_are_consecutive( |
|
batch, dataset_multiseq.frame_annots, debug_info |
|
) |
|
|
|
def _test_multiseq_flavour( |
|
self, |
|
ips_options, |
|
sample_consecutive_frames, |
|
consecutive_frames_max_gap, |
|
num_batches=16, |
|
batch_size=10, |
|
): |
|
debug_info = ( |
|
f" Images per sequence: {ips_options}, " |
|
f"sample_consecutive_frames: {sample_consecutive_frames}, " |
|
f"consecutive_frames_max_gap: {consecutive_frames_max_gap}, " |
|
) |
|
|
|
|
|
frame_gap = consecutive_frames_max_gap if consecutive_frames_max_gap > 0 else 3 |
|
dataset_multiseq = MockDataset(5, max_frame_gap=frame_gap) |
|
sampler = SceneBatchSampler( |
|
dataset_multiseq, |
|
batch_size=batch_size, |
|
num_batches=num_batches, |
|
images_per_seq_options=ips_options, |
|
sample_consecutive_frames=sample_consecutive_frames, |
|
consecutive_frames_max_gap=consecutive_frames_max_gap, |
|
) |
|
|
|
self.assertEqual(len(sampler), num_batches, msg=debug_info) |
|
|
|
it = iter(sampler) |
|
typical_counts = set() |
|
for _ in range(num_batches): |
|
batch = next(it) |
|
self.assertIsNotNone(batch, "batch is None in" + debug_info) |
|
|
|
self.assertEqual(len(batch), batch_size, msg=debug_info) |
|
|
|
counts = _count_by_quotient(batch, 10) |
|
freqs = _count_by_quotient(counts.values(), 1) |
|
self.assertLessEqual( |
|
len(freqs), |
|
2, |
|
msg="We should have maximum of 2 different " |
|
"frequences of sequences in the batch." + debug_info, |
|
) |
|
if len(freqs) == 2: |
|
most_seq_count = max(*freqs.keys()) |
|
last_seq = min(*freqs.keys()) |
|
self.assertEqual( |
|
freqs[last_seq], |
|
1, |
|
msg="Only one odd sequence allowed." + debug_info, |
|
) |
|
else: |
|
self.assertEqual(len(freqs), 1) |
|
most_seq_count = next(iter(freqs)) |
|
|
|
self.assertIn(most_seq_count, ips_options) |
|
typical_counts.add(most_seq_count) |
|
|
|
if sample_consecutive_frames: |
|
self._check_frames_are_consecutive( |
|
batch, |
|
dataset_multiseq.frame_annots, |
|
debug_info, |
|
max_gap=consecutive_frames_max_gap, |
|
) |
|
|
|
self.assertTrue( |
|
all(i in typical_counts for i in ips_options), |
|
"Some of the frequency options did not occur among " |
|
f"the {num_batches} batches (could be just bad luck)." + debug_info, |
|
) |
|
|
|
with self.assertRaises(StopIteration): |
|
batch = next(it) |
|
|
|
def _check_frames_are_consecutive(self, batch, annots, debug_info, max_gap=1): |
|
|
|
for i in range(len(batch) - 1): |
|
curr_idx, next_idx = batch[i : i + 2] |
|
if curr_idx // 10 == next_idx // 10: |
|
if max_gap > 0: |
|
curr_idx, next_idx = [ |
|
annots[idx]["frame_annotation"].frame_number |
|
for idx in (curr_idx, next_idx) |
|
] |
|
gap = max_gap |
|
else: |
|
gap = 1 |
|
|
|
self.assertLessEqual(next_idx - curr_idx, gap, msg=debug_info) |
|
|
|
|
|
def _count_by_quotient(indices, divisor): |
|
counter = defaultdict(int) |
|
for i in indices: |
|
counter[i // divisor] += 1 |
|
|
|
return counter |
|
|
|
|
|
class TestRandomSampling(unittest.TestCase): |
|
def test_double_pool_batch_sampler(self): |
|
unknown_idxs = [2, 3, 4, 5, 8] |
|
known_idxs = [2, 9, 10, 11, 12, 13, 14, 15, 16, 17] |
|
for replacement, num_batches in product([True, False], [None, 4, 5, 6, 30]): |
|
with self.subTest(f"{replacement}, {num_batches}"): |
|
sampler = DoublePoolBatchSampler( |
|
first_indices=unknown_idxs, |
|
rest_indices=known_idxs, |
|
batch_size=4, |
|
replacement=replacement, |
|
num_batches=num_batches, |
|
) |
|
for _ in range(6): |
|
epoch = list(sampler) |
|
self.assertEqual(len(epoch), num_batches or len(unknown_idxs)) |
|
for batch in epoch: |
|
self.assertEqual(len(batch), 4) |
|
self.assertIn(batch[0], unknown_idxs) |
|
for i in batch[1:]: |
|
self.assertIn(i, known_idxs) |
|
if not replacement and 4 != num_batches: |
|
self.assertEqual( |
|
{batch[0] for batch in epoch}, set(unknown_idxs) |
|
) |
|
|