LiteRT
File size: 7,936 Bytes
a5c5b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import os
import unittest

import torch
from omegaconf import DictConfig, OmegaConf
from pytorch3d.implicitron.models.generic_model import GenericModel
from pytorch3d.implicitron.models.renderer.base import EvaluationMode
from pytorch3d.implicitron.tools.config import expand_args_fields, get_default_args
from pytorch3d.renderer.cameras import look_at_view_transform, PerspectiveCameras
from tests.common_testing import get_pytorch3d_dir

from .common_resources import provide_resnet34

IMPLICITRON_CONFIGS_DIR = (
    get_pytorch3d_dir() / "projects" / "implicitron_trainer" / "configs"
)


class TestGenericModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls) -> None:
        provide_resnet34()

    def setUp(self):
        torch.manual_seed(42)

    def test_gm(self):
        # Simple test of a forward and backward pass of the default GenericModel.
        device = torch.device("cuda:0")
        expand_args_fields(GenericModel)
        model = GenericModel(render_image_height=80, render_image_width=80)
        model.to(device)
        self._one_model_test(model, device)

    def test_all_gm_configs(self):
        # Tests all model settings in the implicitron_trainer config folder.
        device = torch.device("cuda:0")
        config_files = []

        for pattern in ("repro_singleseq*.yaml", "repro_multiseq*.yaml"):
            config_files.extend(
                [
                    f
                    for f in IMPLICITRON_CONFIGS_DIR.glob(pattern)
                    if not f.name.endswith("_base.yaml")
                ]
            )

        for config_file in config_files:
            with self.subTest(name=config_file.stem):
                cfg = _load_model_config_from_yaml(str(config_file))
                cfg.render_image_height = 80
                cfg.render_image_width = 80
                model = GenericModel(**cfg)
                model.to(device)
                self._one_model_test(
                    model,
                    device,
                    eval_test=True,
                    bw_test=True,
                )

    def _one_model_test(
        self,
        model,
        device,
        n_train_cameras: int = 5,
        eval_test: bool = True,
        bw_test: bool = True,
    ):

        R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
        cameras = PerspectiveCameras(R=R, T=T, device=device)

        N, H, W = n_train_cameras, model.render_image_height, model.render_image_width

        random_args = {
            "camera": cameras,
            "fg_probability": _random_input_tensor(N, 1, H, W, True, device),
            "depth_map": _random_input_tensor(N, 1, H, W, False, device) + 0.1,
            "mask_crop": _random_input_tensor(N, 1, H, W, True, device),
            "sequence_name": ["sequence"] * N,
            "image_rgb": _random_input_tensor(N, 3, H, W, False, device),
        }

        # training foward pass
        model.train()
        train_preds = model(
            **random_args,
            evaluation_mode=EvaluationMode.TRAINING,
        )
        self.assertTrue(
            train_preds["objective"].isfinite().item()
        )  # check finiteness of the objective

        if bw_test:
            train_preds["objective"].backward()

        if eval_test:
            model.eval()
            with torch.no_grad():
                eval_preds = model(
                    **random_args,
                    evaluation_mode=EvaluationMode.EVALUATION,
                )
                self.assertEqual(
                    eval_preds["images_render"].shape,
                    (1, 3, model.render_image_height, model.render_image_width),
                )

    def test_idr(self):
        # Forward pass of GenericModel with IDR.
        device = torch.device("cuda:0")
        args = get_default_args(GenericModel)
        args.renderer_class_type = "SignedDistanceFunctionRenderer"
        args.implicit_function_class_type = "IdrFeatureField"
        args.implicit_function_IdrFeatureField_args.n_harmonic_functions_xyz = 6

        model = GenericModel(**args)
        model.to(device)

        n_train_cameras = 2
        R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
        cameras = PerspectiveCameras(R=R, T=T, device=device)

        defaulted_args = {
            "depth_map": None,
            "mask_crop": None,
            "sequence_name": None,
        }

        target_image_rgb = torch.rand(
            (n_train_cameras, 3, model.render_image_height, model.render_image_width),
            device=device,
        )
        fg_probability = torch.rand(
            (n_train_cameras, 1, model.render_image_height, model.render_image_width),
            device=device,
        )
        train_preds = model(
            camera=cameras,
            evaluation_mode=EvaluationMode.TRAINING,
            image_rgb=target_image_rgb,
            fg_probability=fg_probability,
            **defaulted_args,
        )
        self.assertGreater(train_preds["objective"].item(), 0)

    def test_viewpool(self):
        device = torch.device("cuda:0")
        args = get_default_args(GenericModel)
        args.view_pooler_enabled = True
        args.image_feature_extractor_class_type = "ResNetFeatureExtractor"
        args.image_feature_extractor_ResNetFeatureExtractor_args.add_masks = False
        model = GenericModel(**args)
        model.to(device)

        n_train_cameras = 2
        R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
        cameras = PerspectiveCameras(R=R, T=T, device=device)

        defaulted_args = {
            "fg_probability": None,
            "depth_map": None,
            "mask_crop": None,
        }

        target_image_rgb = torch.rand(
            (n_train_cameras, 3, model.render_image_height, model.render_image_width),
            device=device,
        )
        train_preds = model(
            camera=cameras,
            evaluation_mode=EvaluationMode.TRAINING,
            image_rgb=target_image_rgb,
            sequence_name=["a"] * n_train_cameras,
            **defaulted_args,
        )
        self.assertGreater(train_preds["objective"].item(), 0)


def _random_input_tensor(
    N: int,
    C: int,
    H: int,
    W: int,
    is_binary: bool,
    device: torch.device,
) -> torch.Tensor:
    T = torch.rand(N, C, H, W, device=device)
    if is_binary:
        T = (T > 0.5).float()
    return T


def _load_model_config_from_yaml(config_path, strict=True) -> DictConfig:
    default_cfg = get_default_args(GenericModel)
    cfg = _load_model_config_from_yaml_rec(default_cfg, config_path)
    return cfg


def _load_model_config_from_yaml_rec(cfg: DictConfig, config_path: str) -> DictConfig:
    cfg_loaded = OmegaConf.load(config_path)
    cfg_model_loaded = None
    if "model_factory_ImplicitronModelFactory_args" in cfg_loaded:
        factory_args = cfg_loaded.model_factory_ImplicitronModelFactory_args
        if "model_GenericModel_args" in factory_args:
            cfg_model_loaded = factory_args.model_GenericModel_args
    defaults = cfg_loaded.pop("defaults", None)
    if defaults is not None:
        for default_name in defaults:
            if default_name in ("_self_", "default_config"):
                continue
            default_name = os.path.splitext(default_name)[0]
            defpath = os.path.join(os.path.dirname(config_path), default_name + ".yaml")
            cfg = _load_model_config_from_yaml_rec(cfg, defpath)
            if cfg_model_loaded is not None:
                cfg = OmegaConf.merge(cfg, cfg_model_loaded)
    elif cfg_model_loaded is not None:
        cfg = OmegaConf.merge(cfg, cfg_model_loaded)
    return cfg