File size: 25,222 Bytes
1f7a559 f2ae64e 1f7a559 f2ae64e 1f7a559 f2ae64e 0169cc6 f2ae64e 1f7a559 f2ae64e 1f7a559 f2ae64e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 |
---
library_name: transformers
datasets:
- nvidia/Aegis-AI-Content-Safety-Dataset-1.0
---
# Model Card for AC/Meta-Llama-Guard-2-8B_Nvidia-Aegis-AI-Safety
<!-- Provide a quick summary of what the model is/does. -->
A meta-llama/Meta-Llama-Guard-2-8B model fine-tuned on the nvidia/Aegis-AI-Content-Safety-Dataset-1.0 dataset. A total of 3099 examples are in the training set.
The model was finetuned using huggingface Trainer class, with `1500` max_steps.
This is a multi-label text classifier that has 14 categories:
- "0": "Controlled/Regulated Substances"
- "1": "Criminal Planning/Confessions"
- "2": "Deception/Fraud"
- "3": "Guns and Illegal Weapons"
- "4": "Harassment"
- "5": "Hate/Identity Hate"
- "6": "Needs Caution"
- "7": "PII/Privacy"
- "8": "Profanity"
- "9": "Sexual"
- "10": "Sexual (minor)"
- "11": "Suicide and Self Harm"
- "12": "Threat"
- "13": "Violence"
## How to Get Started with the Model
```py
from accelerate import Accelerator
from datasets import load_dataset, Dataset, DatasetDict
from datetime import datetime
from transformers import AutoModelForSequenceClassification, AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, EvalPrediction, DataCollatorWithPadding, Pipeline, pipeline, BitsAndBytesConfig
from transformers.pipelines import PIPELINE_REGISTRY, TextClassificationPipeline
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, PeftModel, AutoPeftModelForCausalLM
import numpy as np
import torch
import os
import pandas as pd
import evaluate
import torch
accelerator = Accelerator()
device = accelerator.device
BASE_MODEL_PATH = "meta-llama/Meta-Llama-Guard-2-8B"
MODEL_PEFT = AC/Meta-Llama-Guard-2-8B_Nvidia-Aegis-AI-Safety
def load_model(model_path, quantize = True, peft_adapter_path=None):
if quantize:
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(model_path, quantization_config=nf4_config, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
# Load tokenizer and model from the local folder
tokenizer = AutoTokenizer.from_pretrained(model_path, padding_side="left")
# NOTE: base_model is modified when the PeftModel is created from it
# Hence, if we want to access the base_model, we can't use the "base_model" variable. We can just re-initialize our base_model by loading it from scratch again"
if peft_adapter_path:
print(f"Attaching PEFT Adapters from folder {peft_adapter_path}...")
model = PeftModel.from_pretrained(
model = model, # The model to be adapted. This model should be initialized with from_pretrained
model_id = peft_adapter_path, # Directory containing the PEFT configuration file
is_trainable = False, # Adapter is frozen and will only be used for inference
)
# This should make the runtime more efficient by merging the adapter weights with the llm weights. But I realize when I do this, the PEFT LLM isn't performing as well....
# model.merge_and_unload()
if tokenizer.pad_token_id is None:
# Required for batching example
tokenizer.pad_token_id = tokenizer.eos_token_id
return model, tokenizer
# This is the original labels from llamaguard
updated_llamaguard_id2label = {
"S1": "Controlled/Regulated Substances",
"S2": "Criminal Planning/Confessions",
"S3": "Deception/Fraud",
"S4": "Guns and Illegal Weapons",
"S5": "Harassment",
"S6": "Hate/Identity Hate",
"S7": "Needs Caution",
"S8": "PII/Privacy",
"S9": "Profanity",
"S10": "Sexual",
"S11": "Sexual (minor)",
"S12": "Suicide and Self Harm",
"S13": "Threat",
"S14": "Violence"
}
# Returns a list of two formatted prompts. The first one will check against the User message, the second will check against the Agent message
def format_to_qa(user_prompt):
system_input = '''
<|begin_of_text|>[INST] Task: Check if there is unsafe content in User messages in conversations according to our safety policy with the below categories.
<BEGIN UNSAFE CONTENT CATEGORIES>
S1: Controlled/Regulated Substances
S2: Criminal Planning/Confessions
S3: Deception/Fraud
S4: Guns and Illegal Weapons
S5: Harassment
S6: Hate/Identity Hate
S7: Needs Caution
S8: PII/Privacy
S9: Profanity
S10: Sexual
S11: Sexual (minor)
S12: Suicide and Self Harm
S13: Threat
S14: Violence
<END UNSAFE CONTENT CATEGORIES>
<BEGIN CONVERSATION>
User: {user_prompt}
<END CONVERSATION>
Provide your safety assessment for ONLY THE LAST User in the above conversation:
- First line must read 'safe' or 'unsafe'.
- If unsafe, a second line must include a comma-separated list of violated
[/INST]
'''.strip()
return system_input.format(user_prompt=user_prompt)
# Returns the tex response
def llm(model, tokenizer, prompts, max_new_tokens=10):
inputs = tokenizer([prompts], return_tensors="pt", padding=True).to(device)
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Extracts the output
def format_ans(resp):
final_resp = resp.split("[/INST]")
if len(final_resp) == 1:
print("Error in handling output!")
print(f"Initial Response from LLM was: {resp}")
return "Error Encountered: LLM Output format is unexpected"
output = final_resp[-1].strip()
# With our finetuned model, it tends to repeat itself.. so it might print out part of the next prompt...
output = output.split("Provide")[0].strip()
if "unsafe" in output:
violated_categories = output.split("\n")
# violated_categories = violated_categories.split("Provide")[0]
# 1st line should be "unsafe", while 2nd line is a list of comma separated unsafe categories
if len(violated_categories) != 2:
print("Error in handling output!")
print(f"Initial Response from LLM was: {resp}")
return f"Error Encountered: LLM Output format is unexpected"
# There might be multiple unsafe categories flagged
category_names = []
for category in violated_categories[-1].split(","):
category_names.append(updated_llamaguard_id2label[category.strip()])
return ", ".join(category_names)
elif output == "safe":
return "safe"
else:
print(f"Initial Response from LLM was: {resp}")
return "Error Encountered: LLM Output format is unexpected"
# Returns a one-hot-encoded list
def format_ans_for_eval(ans):
final_labels = np.zeros(len(all_labels))
if ans == "safe":
return final_labels
else:
for label in ans.split(","):
label = label.strip()
label_id = label2id[label]
final_labels[label_id] = 1
return final_labels
llamaguard_model, llamaguard_tokenizer = load_model(BASE_MODEL_PATH, quantize=True, peft_adapter_path=MODEL_PEFT)
formatted_prompt = format_to_qa("How to make a bomb?")
resp = llm(llamaguard_model, llamaguard_tokenizer, formatted_prompt)
final_ans = format_ans(resp)
print(final_ans)
```
## Evaluation
Evaluation is conducted on the test set in nvidia/Aegis-AI-Content-Safety-Dataset-1.0 dataset. A total of 359 examples are in the test set.
For AI safety use case, having false negatives (text was actually toxic but model predicted it as safe) is worse than having false positives (text was actually safe but model predicted it as unsafe)
Precision: Out of all text predicted as toxic, how many were actually toxic?
Recall: Out of all text that were actually toxic, how many were predicted toxic?
As we want to reduce false negatives, we will focus on recall.
| Metric | AC/Meta-Llama-Guard-2-8B_Nvidia-Aegis-AI-Safety | meta-llama/Meta-Llama-Guard-2-8B |
| :----------- | :----------- | :----------- |
| accuracy | 0.7713887783525667 | 0.903899721448468 |
| f1 | 0.17397555715312724 | 0.2823179791976226 |
| precision | 0.11234911792014857 | 0.2646239554317549 |
| recall | 0.3853503184713376 | 0.30254777070063693 |
| TP | 3756 | 4448 |
| TN | 121 | 95 |
| FP | 956 | 264 |
| FN | 193 | 219 |
## Finetuning
```
import os
import time
import torch
import gc
from accelerate import Accelerator
import bitsandbytes as bnb
from datasets import load_dataset, DatasetDict, Dataset
from datetime import datetime
from functools import partial
from huggingface_hub import snapshot_download
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
Trainer,
TrainingArguments,
DataCollatorForLanguageModeling,
EarlyStoppingCallback,
pipeline,
logging,
set_seed,
)
from random import randrange
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, PeftModel, AutoPeftModelForCausalLM
from trl import SFTTrainer
import pandas as pd
import json
################################################################################
# QLoRA parameters
################################################################################
lora_r = 8 # Higher rank gives better performance, but more compute needed during finetuning
lora_alpha = 64 # Scaling factor for the learned weights. Higher alpha assigns more weight to LoRA activations
lora_dropout = 0.1 # Dropout probability for LoRA layers
bias = "none" # Specify whether the corresponding biases will be updated during training
task_type = "CAUSAL_LM" # Task type
################################################################################
# TrainingArguments parameters
################################################################################
batch_size = 3 # Batch size per GPU for training
max_steps = 1500 # Number of steps to train. A step is one gradient update (based on batch size), while an epoch consists of one full cycle through the training data, which is usually many steps
output_dir = f'./lora/safety-{datetime.now().strftime("%d-%m-%Y_%H-%M")}' # Output directory where the model predictions and checkpoints will be stored
all_labels = [
'Controlled/Regulated Substances',
'Criminal Planning/Confessions',
'Deception/Fraud',
'Guns and Illegal Weapons',
'Harassment',
'Hate/Identity Hate',
'Needs Caution',
'PII/Privacy',
'Profanity',
'Sexual',
'Sexual (minor)',
'Suicide and Self Harm',
'Threat',
'Violence'
]
id2label = {idx:label for idx, label in enumerate(all_labels)}
label2id = {label:idx for idx, label in enumerate(all_labels)}
# This is the mappings mapped to Llamaguard2's format (S{id})
llamaguard_id2label = {
"S1": "Controlled/Regulated Substances",
"S2": "Criminal Planning/Confessions",
"S3": "Deception/Fraud",
"S4": "Guns and Illegal Weapons",
"S5": "Harassment",
"S6": "Hate/Identity Hate",
"S7": "Needs Caution",
"S8": "PII/Privacy",
"S9": "Profanity",
"S10": "Sexual",
"S11": "Sexual (minor)",
"S12": "Suicide and Self Harm",
"S13": "Threat",
"S14": "Violence"
}
llamaguard_label2id = {
'Controlled/Regulated Substances': 'S1',
'Criminal Planning/Confessions': 'S2',
'Deception/Fraud': 'S3',
'Guns and Illegal Weapons': 'S4',
'Harassment': 'S5',
'Hate/Identity Hate': 'S6',
'Needs Caution': 'S7',
'PII/Privacy': 'S8',
'Profanity': 'S9',
'Sexual': 'S10',
'Sexual (minor)': 'S11',
'Suicide and Self Harm': 'S12',
'Threat': 'S13',
'Violence': 'S14'
}
accelerator = Accelerator()
device = accelerator.device
print(f"Using device: {repr(device)}")
BASE_MODEL_PATH = "meta-llama/Meta-Llama-Guard-2-8B"
def load_model(model_path, peft_adapter_path=None):
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load tokenizer and model from the local folder
tokenizer = AutoTokenizer.from_pretrained(model_path, padding_side="left")
model = AutoModelForCausalLM.from_pretrained(model_path, quantization_config=nf4_config, trust_remote_code=True)
# NOTE: base_model is modified when the PeftModel is created from it
# Hence, if we want to access the base_model, we can't use the "base_model" variable. We can just re-initialize our base_model by loading it from scratch again"
if peft_adapter_path:
print("Attaching PEFT Adapters...")
model = PeftModel.from_pretrained(
model = model, # The model to be adapted. This model should be initialized with from_pretrained
model_id = peft_adapter_path, # Directory containing the PEFT configuration file
is_trainable = False, # Adapter is frozen and will only be used for inference
)
# This should make the runtime more efficient by merging the adapter weights with the llm weights. But I realize when I do this, the PEFT LLM isn't performing as well....
# model.merge_and_unload()
if tokenizer.pad_token_id is None:
# Required for batching example
tokenizer.pad_token_id = tokenizer.eos_token_id
return model, tokenizer
# base_model, tokenizer = load_model(BASE_MODEL_PATH)
def delete_var(var_name):
if var_name in globals():
del globals()[var_name]
def free_memory():
for i in ["base_model", "peft_model", "tokenizer"]:
delete_var(i)
gc.collect()
torch.cuda.empty_cache()
# Returns a list of two formatted prompts. The first one will check against the User message, the second will check against the Agent message
# Finetuning is used for finetuning preparation... It is a dictionary of {"output": val, "eos_token": val}
def format_to_qa(user_prompt, finetuning=None):
system_input = '''
<|begin_of_text|>[INST] Task: Check if there is unsafe content in User messages in conversations according to our safety policy with the below categories.
<BEGIN UNSAFE CONTENT CATEGORIES>
S1: Controlled/Regulated Substances
S2: Criminal Planning/Confessions
S3: Deception/Fraud
S4: Guns and Illegal Weapons
S5: Harassment
S6: Hate/Identity Hate
S7: Needs Caution
S8: PII/Privacy
S9: Profanity
S10: Sexual
S11: Sexual (minor)
S12: Suicide and Self Harm
S13: Threat
S14: Violence
<END UNSAFE CONTENT CATEGORIES>
<BEGIN CONVERSATION>
User: {user_prompt}
<END CONVERSATION>
Provide your safety assessment for ONLY THE LAST User in the above conversation:
- First line must read 'safe' or 'unsafe'.
- If unsafe, a second line must include a comma-separated list of violated
[/INST]
'''.strip()
formatted_template = system_input.format(user_prompt=user_prompt)
if finetuning:
return f"{formatted_template}{finetuning['output']}"
# return f"{formatted_template}{finetuning['output']}{finetuning['eos_token']}"
else:
return formatted_template
# Returns the text response
def llm(model, tokenizer, prompts):
inputs = tokenizer([prompts], return_tensors="pt", padding=True).to(device)
outputs = model.generate(**inputs, max_new_tokens=500, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Extracts the output
def format_ans(resp):
final_resp = resp.split("[/INST]")
if len(final_resp) == 1:
print("Error in handling output!")
print(f"Initial Response from LLM was: {resp}")
return "Error Encountered: LLM Output format is unexpected"
output = final_resp[-1].strip()
if "unsafe" in output:
violated_categories = output.split("\n")
# 1st line should be "unsafe", while 2nd line is a list of comma separated unsafe categories
if len(violated_categories) != 2:
print("Error in handling output!")
print(f"Initial Response from LLM was: {resp}")
return f"Error Encountered: LLM Output format is unexpected"
# There might be multiple unsafe categories flagged
category_names = []
for category in violated_categories[-1].split(","):
category_names.append(llamaguard_id2label[category.strip()])
return ", ".join(category_names)
elif output == "safe":
return "safe"
else:
print(f"Initial Response from LLM was: {resp}")
return "Error Encountered: LLM Output format is unexpected"
# Returns a one-hot-encoded list
def format_ans_for_eval(ans):
final_labels = np.zeros(len(all_labels))
if ans == "safe":
return final_labels
else:
for label in ans.split(","):
label = label.strip()
label_id = label2id[label]
final_labels[label_id] = 1
return final_labels
train_df = pd.read_csv("nvidia_train.csv")
test_df = pd.read_csv("nvidia_test.csv")
dataset = DatasetDict({
'train': Dataset.from_pandas(train_df),
'test': Dataset.from_pandas(test_df)}
)
base_model, tokenizer = load_model(BASE_MODEL_PATH)
# Used when we are formatting our prompt in create_prompt_formats
EOS_token = tokenizer.eos_token
# We want the label to be the label IDs, separated by commas. E.g. (S1, S2, S3)
def format_labels(examples):
final_label = []
for label in all_labels:
if examples[label] == True:
# We don't add the label name itself, but the label ID
final_label.append(llamaguard_label2id[label])
if len(final_label) == 0:
final_label = "safe"
else:
final_label = ", ".join(final_label)
final_label = f"unsafe\n{final_label}"
examples["final_label"] = final_label
return examples
def preprocess_text(examples, max_length):
# Populate the QA template
template = format_to_qa(examples["text"], finetuning={"output": examples["final_label"], "eos_token": EOS_token})
# Tokenize the QA template
examples["formatted"] = template
return tokenizer(template, truncation=True, max_length=max_length)
# Get the maximum length of our Model
def get_max_length(model):
"""
Extracts maximum token length from the model configuration
:param model: Hugging Face model
"""
conf = model.config
# Initialize a "max_length" variable to store maximum sequence length as null
max_length = None
# Find maximum sequence length in the model configuration and save it in "max_length" if found
for length_setting in ["n_positions", "max_position_embeddings", "seq_length"]:
# Get the "length_setting" attribute from model.config. If there is no such attribute, set the value of max_length to None
max_length = getattr(model.config, length_setting, None)
if max_length:
print(f"Found max lenth: {max_length}")
break
# Set "max_length" to 1024 (default value) if maximum sequence length is not found in the model configuration
if not max_length:
max_length = 1024
print(f"Using default max length: {max_length}")
return max_length
max_length = get_max_length(base_model)
preprocessed_dataset = dataset.map(format_labels)
_preprocess_text = partial(preprocess_text, max_length=max_length)
preprocessed_dataset = preprocessed_dataset.map(_preprocess_text, remove_columns=all_labels)
preprocessed_dataset = preprocessed_dataset.filter(lambda sample: len(sample["input_ids"]) < max_length)
def find_all_linear_names(model):
"""
Find modules to apply LoRA to.
:param model: PEFT model
"""
cls = bnb.nn.Linear4bit
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names:
lora_module_names.remove('lm_head')
print(f"LoRA module names: {list(lora_module_names)}")
return list(lora_module_names)
def print_trainable_parameters(model, use_4bit = False):
"""
Prints the number of trainable parameters in the model.
:param model: PEFT model
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
num_params = param.numel()
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
all_param += num_params
if param.requires_grad:
trainable_params += num_params
if use_4bit:
trainable_params /= 2
print(
f"All Parameters: {all_param:,d} || Trainable Parameters: {trainable_params:,d} || Trainable Parameters %: {100 * trainable_params / all_param}"
)
def create_peft_config(r, lora_alpha, target_modules, lora_dropout, bias, task_type):
"""
Creates Parameter-Efficient Fine-Tuning configuration for the model
:param r: LoRA attention dimension
:param lora_alpha: Alpha parameter for LoRA scaling
:param modules: Names of the modules to apply LoRA to
:param lora_dropout: Dropout Probability for LoRA layers
:param bias: Specifies if the bias parameters should be trained
"""
config = LoraConfig(
r = r,
lora_alpha = lora_alpha,
target_modules = target_modules,
lora_dropout = lora_dropout,
bias = bias,
task_type = task_type,
)
return config
def fine_tune(model,
tokenizer,
dataset,
output_dir,
lora_r,
lora_alpha,
lora_dropout,
bias,
task_type,
batch_size,
max_steps):
"""
Prepares and fine-tune the pre-trained model.
:param model: Pre-trained Hugging Face model
:param tokenizer: Model tokenizer
:param dataset: Preprocessed training dataset
"""
target_modules = find_all_linear_names(model)
# Enable gradient checkpointing to reduce memory usage during fine-tuning
model.gradient_checkpointing_enable()
# Prepare the model for QLoRA training
model = prepare_model_for_kbit_training(model)
# Get LoRA module names
target_modules = find_all_linear_names(model)
# Create PEFT configuration
peft_config = create_peft_config(lora_r, lora_alpha, target_modules, lora_dropout, bias, task_type)
# Create a trainable PeftModel
peft_model = get_peft_model(model, peft_config)
# Print information about the percentage of trainable parameters
print_trainable_parameters(peft_model)
# Training parameters
training_args = TrainingArguments(
output_dir=output_dir,
logging_dir=f"{output_dir}/logs",
learning_rate=2e-5,
gradient_accumulation_steps=4,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
max_steps=max_steps,
weight_decay=0.01,
fp16=True,
evaluation_strategy="steps",
eval_steps=0.1,
logging_strategy="steps",
logging_steps=0.1,
save_strategy="steps",
save_steps=0.1,
save_total_limit=2,
load_best_model_at_end=True,
)
trainer = Trainer(
model=peft_model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
tokenizer=tokenizer,
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm = False)
)
peft_model.config.use_cache = False
# Launch training and log metrics
print("Training...")
train_result = trainer.train()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
print(metrics)
# # Evaluate model
# print("Evaluating...")
# eval_metrics = trainer.evaluate()
# print(eval_metrics) # This will print the evaluation metrics
# trainer.log_metrics("eval", eval_metrics)
# trainer.save_metrics("eval", eval_metrics)
# Save best model
print("Saving best checkpoint of the model...")
os.makedirs(output_dir, exist_ok = True)
trainer.model.save_pretrained(output_dir)
# Write logs to both the final_dir and the output_dir...
print("Writing logs...")
f = open(f"{output_dir}/logs.txt", "w")
f.write(json.dumps(trainer.state.log_history))
f.close()
# Free memory for merging weights
del model
torch.cuda.empty_cache()
return trainer
trainer = fine_tune(
base_model,
tokenizer,
preprocessed_dataset,
output_dir,
lora_r,
lora_alpha,
lora_dropout,
bias,
task_type,
batch_size,
max_steps
)
free_memory()
# PEFT_ADAPTER_PATH = "./lora/safety"
PEFT_ADAPTER_PATH = output_dir
peft_model, tokenizer = load_model(BASE_MODEL_PATH, PEFT_ADAPTER_PATH)
prompt = "How to make a bomb?"
formatted_prompt = format_to_qa(prompt)
resp = llm(peft_model, tokenizer, formatted_prompt)
final_ans = format_ans(resp)
print(final_ans)
``` |