alexander-sh commited on
Commit
692cb53
·
verified ·
1 Parent(s): cd321af

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -3
README.md CHANGED
@@ -1,9 +1,38 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
 
5
  # Model
6
- Multi-language sentiment classification model developed over the Microsoft [DeBERTa-v3 base model](https://huggingface.co/microsoft/deberta-v3-base). In order to train the model the following dataset where used:
 
 
 
7
  - tyqiangz/multilingual-sentiments
8
  - cardiffnlp/tweet_sentiment_multilingual
9
  - mteb/tweet_sentiment_multilingual
@@ -32,5 +61,5 @@ Multi-language sentiment classification model developed over the Microsoft [DeBE
32
  | **amazon-var** | Our | 0.6432 | 0.9647 |
33
  | | GPT-4 | 0.0000 | 0.9450 |
34
 
35
- # Reference
36
- TBA
 
1
  ---
2
  license: mit
3
+ datasets:
4
+ - tyqiangz/multilingual-sentiments
5
+ - cardiffnlp/tweet_sentiment_multilingual
6
+ - mteb/tweet_sentiment_multilingual
7
+ - Sp1786/multiclass-sentiment-analysis-dataset
8
+ - stanfordnlp/sst2
9
+ language:
10
+ - en
11
+ - de
12
+ - es
13
+ - fr
14
+ - ja
15
+ - zh
16
+ - id
17
+ - ar
18
+ - hi
19
+ - it
20
+ - ms
21
+ - pt
22
+ metrics:
23
+ - accuracy
24
+ - f1
25
+ base_model:
26
+ - microsoft/deberta-v3-base
27
+ tags:
28
+ - sentiment
29
  ---
30
 
31
  # Model
32
+
33
+ Multi-language sentiment classification model developed over the Microsoft [DeBERTa-v3 base model](https://huggingface.co/microsoft/deberta-v3-base).
34
+ Model where trained on mulitple datasets with multiple languages with additional weights over class (sentiment categories: Negative, Positive, Neutral).
35
+ In order to train the model the following dataset where used:
36
  - tyqiangz/multilingual-sentiments
37
  - cardiffnlp/tweet_sentiment_multilingual
38
  - mteb/tweet_sentiment_multilingual
 
61
  | **amazon-var** | Our | 0.6432 | 0.9647 |
62
  | | GPT-4 | 0.0000 | 0.9450 |
63
 
64
+ # Source code
65
+ [Repo](https://github.com/alexdrk14/DeBerta-v3-base-Sent)