|
|
|
module attributes { |
|
llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", |
|
llvm.target_triple = "x86_64-unknown-linux-gnu", |
|
"onnx-mlir.symbol-postfix" = "onnxmodel.onnx.mlir", |
|
vaimlconf.device = "stx", |
|
vaimlconf.device_models = "${vaimlconf.install_dir}/data/deviceModels", |
|
vaimlconf.install_dir = "/usr/local/lib/python3.10/dist-packages/flexml/flexml_extras", |
|
vaimlconf.library_metadata = ["${vaimlconf.install_dir}/data/libraryMetadata/L1", "${vaimlconf.install_dir}/data/libraryMetadata/L2", "${vaimlconf.install_dir}/../../vitis_mllib/L1/metadata", "${vaimlconf.install_dir}/../../vitis_mllib/L2/metadata", "${vaimlconf.install_dir}/share/microkernel-tiling/tiling-recipe-specs"], |
|
vaimlconf.single_core_compiler = "chess"} { |
|
func.func @main_graph(%arg0: tensor<1x180x320x4xf32> {onnx.name = "385"} loc(unknown), %arg1: tensor<1x16x90x160xf32> {onnx.name = "394"} loc(unknown), %arg2: tensor<1x20x45x80xf32> {onnx.name = "395"} loc(unknown), %arg3: tensor<1x40x23x40xf32> {onnx.name = "396"} loc(unknown), %arg4: tensor<1x64x12x20xf32> {onnx.name = "397"} loc(unknown)) -> (tensor<1x1x180x320xf32> {onnx.name = "921"}, tensor<1x16x90x160xf32> {onnx.name = "894"}, tensor<1x20x45x80xf32> {onnx.name = "868"}, tensor<1x40x23x40xf32> {onnx.name = "832"}, tensor<1x64x12x20xf32> {onnx.name = "796"}, tensor<1x3x180x320xf32> {onnx.name = "916"}) { |
|
%0 = onnx.Constant dense<[[[-4.850000e-01]], [[-4.560000e-01]], [[-4.060000e-01]]]> : tensor<3x1x1xf32> loc( |
|
%1 = onnx.Constant dense<[3, 1]> : tensor<2xi64> loc( |
|
%2 = onnx.Constant dense<16> : tensor<2xi64> loc( |
|
%3 = onnx.Constant dense<20> : tensor<2xi64> loc( |
|
%4 = onnx.Constant dense<40> : tensor<2xi64> loc( |
|
%5 = onnx.Constant dense<64> : tensor<2xi64> loc( |
|
%6 = "onnx.NoValue"() {onnx_node_name = "onnx.NoValue_33", value} : () -> none loc( |
|
%7 = onnx.Constant dense_resource<__elided__> : tensor<184x80x1x1xf32> loc( |
|
%8 = onnx.Constant dense_resource<__elided__> : tensor<184xf32> loc( |
|
%9 = onnx.Constant dense_resource<__elided__> : tensor<184x1x3x3xf32> loc( |
|
%10 = onnx.Constant dense_resource<__elided__> : tensor<184xf32> loc( |
|
%11 = onnx.Constant dense_resource<__elided__> : tensor<80x184x1x1xf32> loc( |
|
%12 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc( |
|
%13 = onnx.Constant dense_resource<__elided__> : tensor<184x80x1x1xf32> loc( |
|
%14 = onnx.Constant dense_resource<__elided__> : tensor<184xf32> loc( |
|
%15 = onnx.Constant dense_resource<__elided__> : tensor<184x1x3x3xf32> loc( |
|
%16 = onnx.Constant dense_resource<__elided__> : tensor<184xf32> loc( |
|
%17 = onnx.Constant dense_resource<__elided__> : tensor<80x184x1x1xf32> loc( |
|
%18 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc( |
|
%19 = onnx.Constant dense_resource<__elided__> : tensor<480x80x1x1xf32> loc( |
|
%20 = onnx.Constant dense_resource<__elided__> : tensor<480xf32> loc( |
|
%21 = onnx.Constant dense_resource<__elided__> : tensor<480x1x3x3xf32> loc( |
|
%22 = onnx.Constant dense_resource<__elided__> : tensor<480xf32> loc( |
|
%23 = onnx.Constant dense_resource<__elided__> : tensor<112x480x1x1xf32> loc( |
|
%24 = onnx.Constant dense_resource<__elided__> : tensor<112xf32> loc( |
|
%25 = onnx.Constant dense_resource<__elided__> : tensor<672x112x1x1xf32> loc( |
|
%26 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc( |
|
%27 = onnx.Constant dense_resource<__elided__> : tensor<672x1x3x3xf32> loc( |
|
%28 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc( |
|
%29 = onnx.Constant dense_resource<__elided__> : tensor<112x672x1x1xf32> loc( |
|
%30 = onnx.Constant dense_resource<__elided__> : tensor<112xf32> loc( |
|
%31 = onnx.Constant dense_resource<__elided__> : tensor<672x112x1x1xf32> loc( |
|
%32 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc( |
|
%33 = onnx.Constant dense_resource<__elided__> : tensor<672x1x5x5xf32> loc( |
|
%34 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc( |
|
%35 = onnx.Constant dense_resource<__elided__> : tensor<160x672x1x1xf32> loc( |
|
%36 = onnx.Constant dense_resource<__elided__> : tensor<160xf32> loc( |
|
%37 = onnx.Constant dense_resource<__elided__> : tensor<960x160x1x1xf32> loc( |
|
%38 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%39 = onnx.Constant dense_resource<__elided__> : tensor<960x1x5x5xf32> loc( |
|
%40 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%41 = onnx.Constant dense_resource<__elided__> : tensor<160x960x1x1xf32> loc( |
|
%42 = onnx.Constant dense_resource<__elided__> : tensor<160xf32> loc( |
|
%43 = onnx.Constant dense_resource<__elided__> : tensor<960x160x1x1xf32> loc( |
|
%44 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%45 = onnx.Constant dense_resource<__elided__> : tensor<960x1x5x5xf32> loc( |
|
%46 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%47 = onnx.Constant dense_resource<__elided__> : tensor<160x960x1x1xf32> loc( |
|
%48 = onnx.Constant dense_resource<__elided__> : tensor<160xf32> loc( |
|
%49 = onnx.Constant dense_resource<__elided__> : tensor<960x160x1x1xf32> loc( |
|
%50 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%51 = onnx.Constant dense_resource<__elided__> : tensor<128x960x1x1xf32> loc( |
|
%52 = onnx.Constant dense_resource<__elided__> : tensor<128xf32> loc( |
|
%53 = onnx.Constant dense_resource<__elided__> : tensor<80x171x3x3xf32> loc( |
|
%54 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc( |
|
%55 = onnx.Constant dense_resource<__elided__> : tensor<40x107x3x3xf32> loc( |
|
%56 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc( |
|
%57 = onnx.Constant dense_resource<__elided__> : tensor<32x59x3x3xf32> loc( |
|
%58 = onnx.Constant dense_resource<__elided__> : tensor<32xf32> loc( |
|
%59 = onnx.Constant dense_resource<__elided__> : tensor<16x35x3x3xf32> loc( |
|
%60 = onnx.Constant dense<[0.281471759, -0.0896756947, 0.0517602414, -0.266139954, 0.132527292, 0.684469878, -0.0511226803, 0.859402895, 0.504835129, 0.569725394, 0.217058718, -0.0543790609, -0.30986914, 0.451566547, 0.166573063, 0.415171683]> : tensor<16xf32> loc( |
|
%61 = onnx.Constant dense_resource<__elided__> : tensor<16x16x3x3xf32> loc( |
|
%62 = onnx.Constant dense<[-0.257117867, -0.332320929, -0.342930794, 0.882337093, -0.811691761, 1.04650748, 1.993430e-01, 0.471133053, 0.0722430944, 0.554342687, 1.3374486, 0.48697716, 1.31853354, 0.714223623, 1.16618729, 0.738572299]> : tensor<16xf32> loc( |
|
%63 = onnx.Constant dense<2> : tensor<1xi64> loc( |
|
%64 = onnx.Constant dense<[1.000000e+00, 1.000000e+00, 2.000000e+00, 2.000000e+00]> : tensor<4xf32> loc( |
|
%65 = onnx.Constant dense<2.550000e+02> : tensor<f32> loc( |
|
%66 = onnx.Constant dense<3> : tensor<1xi64> loc( |
|
%67 = onnx.Constant dense<0> : tensor<1xi64> loc( |
|
%68 = onnx.Constant dense<[[[2.290000e-01]], [[2.240000e-01]], [[2.250000e-01]]]> : tensor<3x1x1xf32> loc( |
|
%69 = onnx.Constant dense<0.000000e+00> : tensor<f32> loc( |
|
%70 = onnx.Constant dense<6.000000e+00> : tensor<f32> loc( |
|
%71 = onnx.Constant dense<3.000000e+00> : tensor<f32> loc( |
|
%72 = onnx.Constant dense<23> : tensor<1xi64> loc( |
|
%73 = onnx.Constant dense<45> : tensor<1xi64> loc( |
|
%74 = onnx.Constant dense<1> : tensor<1xi64> loc( |
|
%75 = onnx.Constant dense<1.000000e+00> : tensor<f32> loc( |
|
%76 = onnx.Constant dense_resource<__elided__> : tensor<16x3x3x3xf32> loc( |
|
%77 = onnx.Constant dense<[2.98861408, -1.22985208, 2.43826318, -3.98499513, 4.62797928, 2.54142761, 2.45345306, 2.64061832, 2.13576674, 2.30800247, -0.198341176, -0.427822977, -1.09159482, 4.85548782, 2.70597649, 2.6902504]> : tensor<16xf32> loc( |
|
%78 = onnx.Constant dense_resource<__elided__> : tensor<16x1x3x3xf32> loc( |
|
%79 = onnx.Constant dense<[-4.38406658, -1.06764766E-8, -0.704851329, -1.05036237E-8, -4.89120433E-9, 1.53249037, -0.0617836975, 2.16366434, 0.0416259095, -4.12739087E-9, -3.50249429E-9, -7.75795516E-9, -4.04315559E-9, 0.292217016, -0.010752866, 1.63358212]> : tensor<16xf32> loc( |
|
%80 = onnx.Constant dense_resource<__elided__> : tensor<16x16x1x1xf32> loc( |
|
%81 = onnx.Constant dense<[-1.31068802, 0.586562276, 5.67538071, 0.551027656, 2.19523954, 3.83854461, 0.0600251146, -2.18778157, -1.5404067, 2.044780e+00, -4.23846388, 0.703142225, -8.39978456E-5, 3.50620365, -0.531753063, -5.91183185]> : tensor<16xf32> loc( |
|
%82 = onnx.Constant dense_resource<__elided__> : tensor<64x16x1x1xf32> loc( |
|
%83 = onnx.Constant dense_resource<__elided__> : tensor<64xf32> loc( |
|
%84 = onnx.Constant dense_resource<__elided__> : tensor<64x1x3x3xf32> loc( |
|
%85 = onnx.Constant dense_resource<__elided__> : tensor<64xf32> loc( |
|
%86 = onnx.Constant dense_resource<__elided__> : tensor<24x64x1x1xf32> loc( |
|
%87 = onnx.Constant dense_resource<__elided__> : tensor<24xf32> loc( |
|
%88 = onnx.Constant dense_resource<__elided__> : tensor<72x24x1x1xf32> loc( |
|
%89 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc( |
|
%90 = onnx.Constant dense_resource<__elided__> : tensor<72x1x3x3xf32> loc( |
|
%91 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc( |
|
%92 = onnx.Constant dense_resource<__elided__> : tensor<24x72x1x1xf32> loc( |
|
%93 = onnx.Constant dense_resource<__elided__> : tensor<24xf32> loc( |
|
%94 = onnx.Constant dense_resource<__elided__> : tensor<72x24x1x1xf32> loc( |
|
%95 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc( |
|
%96 = onnx.Constant dense_resource<__elided__> : tensor<72x1x5x5xf32> loc( |
|
%97 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc( |
|
%98 = onnx.Constant dense_resource<__elided__> : tensor<40x72x1x1xf32> loc( |
|
%99 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc( |
|
%100 = onnx.Constant dense_resource<__elided__> : tensor<120x40x1x1xf32> loc( |
|
%101 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%102 = onnx.Constant dense_resource<__elided__> : tensor<120x1x5x5xf32> loc( |
|
%103 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%104 = onnx.Constant dense_resource<__elided__> : tensor<40x120x1x1xf32> loc( |
|
%105 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc( |
|
%106 = onnx.Constant dense_resource<__elided__> : tensor<120x40x1x1xf32> loc( |
|
%107 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%108 = onnx.Constant dense_resource<__elided__> : tensor<120x1x5x5xf32> loc( |
|
%109 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%110 = onnx.Constant dense_resource<__elided__> : tensor<40x120x1x1xf32> loc( |
|
%111 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc( |
|
%112 = onnx.Constant dense_resource<__elided__> : tensor<240x40x1x1xf32> loc( |
|
%113 = onnx.Constant dense_resource<__elided__> : tensor<240xf32> loc( |
|
%114 = onnx.Constant dense_resource<__elided__> : tensor<240x1x3x3xf32> loc( |
|
%115 = onnx.Constant dense_resource<__elided__> : tensor<240xf32> loc( |
|
%116 = onnx.Constant dense_resource<__elided__> : tensor<80x240x1x1xf32> loc( |
|
%117 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc( |
|
%118 = onnx.Constant dense_resource<__elided__> : tensor<200x80x1x1xf32> loc( |
|
%119 = onnx.Constant dense_resource<__elided__> : tensor<200xf32> loc( |
|
%120 = onnx.Constant dense_resource<__elided__> : tensor<200x1x3x3xf32> loc( |
|
%121 = onnx.Constant dense_resource<__elided__> : tensor<200xf32> loc( |
|
%122 = onnx.Constant dense_resource<__elided__> : tensor<80x200x1x1xf32> loc( |
|
%123 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc( |
|
%124 = onnx.Constant dense_resource<__elided__> : tensor<128x960x1x1xf32> loc( |
|
%125 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%126 = onnx.Constant dense_resource<__elided__> : tensor<120x480x1x1xf32> loc( |
|
%127 = onnx.Constant dense_resource<__elided__> : tensor<480xf32> loc( |
|
%128 = onnx.Constant dense_resource<__elided__> : tensor<480x120x1x1xf32> loc( |
|
%129 = onnx.Constant dense_resource<__elided__> : tensor<168xf32> loc( |
|
%130 = onnx.Constant dense_resource<__elided__> : tensor<168x672x1x1xf32> loc( |
|
%131 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc( |
|
%132 = onnx.Constant dense_resource<__elided__> : tensor<672x168x1x1xf32> loc( |
|
%133 = onnx.Constant dense_resource<__elided__> : tensor<168xf32> loc( |
|
%134 = onnx.Constant dense_resource<__elided__> : tensor<168x672x1x1xf32> loc( |
|
%135 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc( |
|
%136 = onnx.Constant dense_resource<__elided__> : tensor<672x168x1x1xf32> loc( |
|
%137 = onnx.Constant dense_resource<__elided__> : tensor<240xf32> loc( |
|
%138 = onnx.Constant dense_resource<__elided__> : tensor<240x960x1x1xf32> loc( |
|
%139 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%140 = onnx.Constant dense_resource<__elided__> : tensor<960x240x1x1xf32> loc( |
|
%141 = onnx.Constant dense_resource<__elided__> : tensor<240xf32> loc( |
|
%142 = onnx.Constant dense_resource<__elided__> : tensor<240x960x1x1xf32> loc( |
|
%143 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%144 = onnx.Constant dense_resource<__elided__> : tensor<960x240x1x1xf32> loc( |
|
%145 = onnx.Constant dense_resource<__elided__> : tensor<24xf32> loc( |
|
%146 = onnx.Constant dense_resource<__elided__> : tensor<24x72x1x1xf32> loc( |
|
%147 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc( |
|
%148 = onnx.Constant dense_resource<__elided__> : tensor<72x24x1x1xf32> loc( |
|
%149 = onnx.Constant dense_resource<__elided__> : tensor<32xf32> loc( |
|
%150 = onnx.Constant dense_resource<__elided__> : tensor<32x120x1x1xf32> loc( |
|
%151 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%152 = onnx.Constant dense_resource<__elided__> : tensor<120x32x1x1xf32> loc( |
|
%153 = onnx.Constant dense_resource<__elided__> : tensor<32xf32> loc( |
|
%154 = onnx.Constant dense_resource<__elided__> : tensor<32x120x1x1xf32> loc( |
|
%155 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%156 = onnx.Constant dense_resource<__elided__> : tensor<120x32x1x1xf32> loc( |
|
%157 = onnx.Constant dense<[0.00544366054, 0.154367775, 0.115729354, 0.171141103, -0.168815523, 0.0456937179, 0.188233331, 0.0151384082, 0.242783383, -0.139173314, -0.24988465, -9.479440e-02, -0.055940561, -0.0512795448, -0.0738077834, 0.0476587117]> : tensor<16xf32> loc( |
|
%158 = onnx.Constant dense_resource<__elided__> : tensor<16x32x3x3xf32> loc( |
|
%159 = onnx.Constant dense_resource<__elided__> : tensor<32xf32> loc( |
|
%160 = onnx.Constant dense_resource<__elided__> : tensor<32x32x3x3xf32> loc( |
|
%161 = onnx.Constant dense_resource<__elided__> : tensor<20xf32> loc( |
|
%162 = onnx.Constant dense_resource<__elided__> : tensor<20x40x3x3xf32> loc( |
|
%163 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc( |
|
%164 = onnx.Constant dense_resource<__elided__> : tensor<40x40x3x3xf32> loc( |
|
%165 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc( |
|
%166 = onnx.Constant dense_resource<__elided__> : tensor<40x80x3x3xf32> loc( |
|
%167 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc( |
|
%168 = onnx.Constant dense_resource<__elided__> : tensor<80x80x3x3xf32> loc( |
|
%169 = onnx.Constant dense_resource<__elided__> : tensor<64xf32> loc( |
|
%170 = onnx.Constant dense_resource<__elided__> : tensor<64x128x3x3xf32> loc( |
|
%171 = onnx.Constant dense_resource<__elided__> : tensor<128xf32> loc( |
|
%172 = onnx.Constant dense_resource<__elided__> : tensor<128x128x3x3xf32> loc( |
|
%173 = onnx.Constant dense<[0.00409470545, 0.00284675183, 0.00200544903, 0.124928087]> : tensor<4xf32> loc( |
|
%174 = onnx.Constant dense_resource<__elided__> : tensor<4x16x1x1xf32> loc( |
|
%175 = "onnx.Div"(%arg0, %65) {onnx_node_name = "Div_2"} : (tensor<1x180x320x4xf32>, tensor<f32>) -> tensor<1x180x320x4xf32> loc( |
|
%176 = "onnx.Slice"(%175, %67, %66, %66, %74) {onnx_node_name = "Slice_7"} : (tensor<1x180x320x4xf32>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>) -> tensor<1x180x320x3xf32> loc( |
|
%177 = "onnx.Transpose"(%176) {onnx_node_name = "Transpose_8", perm = [0, 3, 1, 2]} : (tensor<1x180x320x3xf32>) -> tensor<1x3x180x320xf32> loc( |
|
%178 = "onnx.Add"(%177, %0) {onnx_node_name = "Sub_14-Initializer_398_30"} : (tensor<1x3x180x320xf32>, tensor<3x1x1xf32>) -> tensor<1x3x180x320xf32> loc( |
|
%179 = "onnx.Div"(%178, %68) {onnx_node_name = "Div_16"} : (tensor<1x3x180x320xf32>, tensor<3x1x1xf32>) -> tensor<1x3x180x320xf32> loc( |
|
%180 = "onnx.Conv"(%179, %76, %77) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_17", |
|
pads = [1, 1, 1, 1], |
|
strides = [2, 2]} : (tensor<1x3x180x320xf32>, tensor<16x3x3x3xf32>, tensor<16xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%181 = "onnx.Add"(%180, %71) {onnx_node_name = "Add_19"} : (tensor<1x16x90x160xf32>, tensor<f32>) -> tensor<1x16x90x160xf32> loc( |
|
%182 = "onnx.Clip"(%181, %69, %70) {onnx_node_name = "Clip_22_12"} : (tensor<1x16x90x160xf32>, tensor<f32>, tensor<f32>) -> tensor<1x16x90x160xf32> loc( |
|
%183 = "onnx.Div"(%182, %70) {onnx_node_name = "Div_24"} : (tensor<1x16x90x160xf32>, tensor<f32>) -> tensor<1x16x90x160xf32> loc( |
|
%184 = "onnx.Mul"(%180, %183) {onnx_node_name = "Mul_25"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%185 = "onnx.Conv"(%184, %78, %79) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 16 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_26", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x16x90x160xf32>, tensor<16x1x3x3xf32>, tensor<16xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%186 = "onnx.Relu"(%185) {onnx_node_name = "Relu_27"} : (tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%187 = "onnx.Conv"(%186, %80, %81) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_28", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x16x90x160xf32>, tensor<16x16x1x1xf32>, tensor<16xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%188 = "onnx.Add"(%187, %184) {onnx_node_name = "Add_29"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%189 = "onnx.Conv"(%188, %82, %83) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_30", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x16x90x160xf32>, tensor<64x16x1x1xf32>, tensor<64xf32>) -> tensor<1x64x90x160xf32> loc( |
|
%190 = "onnx.Relu"(%189) {onnx_node_name = "Relu_31"} : (tensor<1x64x90x160xf32>) -> tensor<1x64x90x160xf32> loc( |
|
%191 = "onnx.Conv"(%190, %84, %85) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 64 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_32", |
|
pads = [1, 1, 1, 1], |
|
strides = [2, 2]} : (tensor<1x64x90x160xf32>, tensor<64x1x3x3xf32>, tensor<64xf32>) -> tensor<1x64x45x80xf32> loc( |
|
%192 = "onnx.Relu"(%191) {onnx_node_name = "Relu_33"} : (tensor<1x64x45x80xf32>) -> tensor<1x64x45x80xf32> loc( |
|
%193 = "onnx.Conv"(%192, %86, %87) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_34", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x64x45x80xf32>, tensor<24x64x1x1xf32>, tensor<24xf32>) -> tensor<1x24x45x80xf32> loc( |
|
%194 = "onnx.Conv"(%193, %88, %89) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_35", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x24x45x80xf32>, tensor<72x24x1x1xf32>, tensor<72xf32>) -> tensor<1x72x45x80xf32> loc( |
|
%195 = "onnx.Relu"(%194) {onnx_node_name = "Relu_36"} : (tensor<1x72x45x80xf32>) -> tensor<1x72x45x80xf32> loc( |
|
%196 = "onnx.Conv"(%195, %90, %91) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 72 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_37", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x72x45x80xf32>, tensor<72x1x3x3xf32>, tensor<72xf32>) -> tensor<1x72x45x80xf32> loc( |
|
%197 = "onnx.Relu"(%196) {onnx_node_name = "Relu_38"} : (tensor<1x72x45x80xf32>) -> tensor<1x72x45x80xf32> loc( |
|
%198 = "onnx.Conv"(%197, %92, %93) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_39", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x72x45x80xf32>, tensor<24x72x1x1xf32>, tensor<24xf32>) -> tensor<1x24x45x80xf32> loc( |
|
%199 = "onnx.Add"(%198, %193) {onnx_node_name = "Add_40"} : (tensor<1x24x45x80xf32>, tensor<1x24x45x80xf32>) -> tensor<1x24x45x80xf32> loc( |
|
%200 = "onnx.Conv"(%199, %94, %95) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_41", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x24x45x80xf32>, tensor<72x24x1x1xf32>, tensor<72xf32>) -> tensor<1x72x45x80xf32> loc( |
|
%201 = "onnx.Relu"(%200) {onnx_node_name = "Relu_42"} : (tensor<1x72x45x80xf32>) -> tensor<1x72x45x80xf32> loc( |
|
%202 = "onnx.Conv"(%201, %96, %97) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 72 : si64, |
|
kernel_shape = [5, 5], |
|
onnx_node_name = "Conv_43", |
|
pads = [2, 2, 2, 2], |
|
strides = [2, 2]} : (tensor<1x72x45x80xf32>, tensor<72x1x5x5xf32>, tensor<72xf32>) -> tensor<1x72x23x40xf32> loc( |
|
%203 = "onnx.Relu"(%202) {onnx_node_name = "Relu_44"} : (tensor<1x72x23x40xf32>) -> tensor<1x72x23x40xf32> loc( |
|
%204 = "onnx.ReduceMeanV13"(%203) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_45_45"} : (tensor<1x72x23x40xf32>) -> tensor<1x72x1x1xf32> loc( |
|
%205 = "onnx.Conv"(%204, %146, %145) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_46", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x72x1x1xf32>, tensor<24x72x1x1xf32>, tensor<24xf32>) -> tensor<1x24x1x1xf32> loc( |
|
%206 = "onnx.Relu"(%205) {onnx_node_name = "Relu_47"} : (tensor<1x24x1x1xf32>) -> tensor<1x24x1x1xf32> loc( |
|
%207 = "onnx.Conv"(%206, %148, %147) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_48", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x24x1x1xf32>, tensor<72x24x1x1xf32>, tensor<72xf32>) -> tensor<1x72x1x1xf32> loc( |
|
%208 = "onnx.Add"(%207, %71) {onnx_node_name = "Add_50"} : (tensor<1x72x1x1xf32>, tensor<f32>) -> tensor<1x72x1x1xf32> loc( |
|
%209 = "onnx.Clip"(%208, %69, %70) {onnx_node_name = "Clip_53_32"} : (tensor<1x72x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x72x1x1xf32> loc( |
|
%210 = "onnx.Div"(%209, %70) {onnx_node_name = "Div_55"} : (tensor<1x72x1x1xf32>, tensor<f32>) -> tensor<1x72x1x1xf32> loc( |
|
%211 = "onnx.Mul"(%210, %203) {onnx_node_name = "Mul_56"} : (tensor<1x72x1x1xf32>, tensor<1x72x23x40xf32>) -> tensor<1x72x23x40xf32> loc( |
|
%212 = "onnx.Conv"(%211, %98, %99) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_57", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x72x23x40xf32>, tensor<40x72x1x1xf32>, tensor<40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%213 = "onnx.Conv"(%212, %100, %101) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_58", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x40x23x40xf32>, tensor<120x40x1x1xf32>, tensor<120xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%214 = "onnx.Relu"(%213) {onnx_node_name = "Relu_59"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%215 = "onnx.Conv"(%214, %102, %103) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 120 : si64, |
|
kernel_shape = [5, 5], |
|
onnx_node_name = "Conv_60", |
|
pads = [2, 2, 2, 2], |
|
strides = [1, 1]} : (tensor<1x120x23x40xf32>, tensor<120x1x5x5xf32>, tensor<120xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%216 = "onnx.Relu"(%215) {onnx_node_name = "Relu_61"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%217 = "onnx.ReduceMeanV13"(%216) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_62_51"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x1x1xf32> loc( |
|
%218 = "onnx.Conv"(%217, %150, %149) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_63", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x120x1x1xf32>, tensor<32x120x1x1xf32>, tensor<32xf32>) -> tensor<1x32x1x1xf32> loc( |
|
%219 = "onnx.Relu"(%218) {onnx_node_name = "Relu_64"} : (tensor<1x32x1x1xf32>) -> tensor<1x32x1x1xf32> loc( |
|
%220 = "onnx.Conv"(%219, %152, %151) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_65", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x32x1x1xf32>, tensor<120x32x1x1xf32>, tensor<120xf32>) -> tensor<1x120x1x1xf32> loc( |
|
%221 = "onnx.Add"(%220, %71) {onnx_node_name = "Add_67"} : (tensor<1x120x1x1xf32>, tensor<f32>) -> tensor<1x120x1x1xf32> loc( |
|
%222 = "onnx.Clip"(%221, %69, %70) {onnx_node_name = "Clip_70_4"} : (tensor<1x120x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x120x1x1xf32> loc( |
|
%223 = "onnx.Div"(%222, %70) {onnx_node_name = "Div_72"} : (tensor<1x120x1x1xf32>, tensor<f32>) -> tensor<1x120x1x1xf32> loc( |
|
%224 = "onnx.Mul"(%223, %216) {onnx_node_name = "Mul_73"} : (tensor<1x120x1x1xf32>, tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%225 = "onnx.Conv"(%224, %104, %105) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_74", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x120x23x40xf32>, tensor<40x120x1x1xf32>, tensor<40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%226 = "onnx.Add"(%225, %212) {onnx_node_name = "Add_75"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%227 = "onnx.Conv"(%226, %106, %107) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_76", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x40x23x40xf32>, tensor<120x40x1x1xf32>, tensor<120xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%228 = "onnx.Relu"(%227) {onnx_node_name = "Relu_77"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%229 = "onnx.Conv"(%228, %108, %109) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 120 : si64, |
|
kernel_shape = [5, 5], |
|
onnx_node_name = "Conv_78", |
|
pads = [2, 2, 2, 2], |
|
strides = [1, 1]} : (tensor<1x120x23x40xf32>, tensor<120x1x5x5xf32>, tensor<120xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%230 = "onnx.Relu"(%229) {onnx_node_name = "Relu_79"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%231 = "onnx.ReduceMeanV13"(%230) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_80_18"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x1x1xf32> loc( |
|
%232 = "onnx.Conv"(%231, %154, %153) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_81", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x120x1x1xf32>, tensor<32x120x1x1xf32>, tensor<32xf32>) -> tensor<1x32x1x1xf32> loc( |
|
%233 = "onnx.Relu"(%232) {onnx_node_name = "Relu_82"} : (tensor<1x32x1x1xf32>) -> tensor<1x32x1x1xf32> loc( |
|
%234 = "onnx.Conv"(%233, %156, %155) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_83", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x32x1x1xf32>, tensor<120x32x1x1xf32>, tensor<120xf32>) -> tensor<1x120x1x1xf32> loc( |
|
%235 = "onnx.Add"(%234, %71) {onnx_node_name = "Add_85"} : (tensor<1x120x1x1xf32>, tensor<f32>) -> tensor<1x120x1x1xf32> loc( |
|
%236 = "onnx.Clip"(%235, %69, %70) {onnx_node_name = "Clip_88_48"} : (tensor<1x120x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x120x1x1xf32> loc( |
|
%237 = "onnx.Div"(%236, %70) {onnx_node_name = "Div_90"} : (tensor<1x120x1x1xf32>, tensor<f32>) -> tensor<1x120x1x1xf32> loc( |
|
%238 = "onnx.Mul"(%237, %230) {onnx_node_name = "Mul_91"} : (tensor<1x120x1x1xf32>, tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%239 = "onnx.Conv"(%238, %110, %111) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_92", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x120x23x40xf32>, tensor<40x120x1x1xf32>, tensor<40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%240 = "onnx.Add"(%239, %226) {onnx_node_name = "Add_93"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%241 = "onnx.Conv"(%240, %112, %113) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_94", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x40x23x40xf32>, tensor<240x40x1x1xf32>, tensor<240xf32>) -> tensor<1x240x23x40xf32> loc( |
|
%242 = "onnx.Add"(%241, %71) {onnx_node_name = "Add_96"} : (tensor<1x240x23x40xf32>, tensor<f32>) -> tensor<1x240x23x40xf32> loc( |
|
%243 = "onnx.Clip"(%242, %69, %70) {onnx_node_name = "Clip_99_36"} : (tensor<1x240x23x40xf32>, tensor<f32>, tensor<f32>) -> tensor<1x240x23x40xf32> loc( |
|
%244 = "onnx.Div"(%243, %70) {onnx_node_name = "Div_101"} : (tensor<1x240x23x40xf32>, tensor<f32>) -> tensor<1x240x23x40xf32> loc( |
|
%245 = "onnx.Mul"(%241, %244) {onnx_node_name = "Mul_102"} : (tensor<1x240x23x40xf32>, tensor<1x240x23x40xf32>) -> tensor<1x240x23x40xf32> loc( |
|
%246 = "onnx.Conv"(%245, %114, %115) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 240 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_103", |
|
pads = [1, 1, 1, 1], |
|
strides = [2, 2]} : (tensor<1x240x23x40xf32>, tensor<240x1x3x3xf32>, tensor<240xf32>) -> tensor<1x240x12x20xf32> loc( |
|
%247 = "onnx.Add"(%246, %71) {onnx_node_name = "Add_105"} : (tensor<1x240x12x20xf32>, tensor<f32>) -> tensor<1x240x12x20xf32> loc( |
|
%248 = "onnx.Clip"(%247, %69, %70) {onnx_node_name = "Clip_108_29"} : (tensor<1x240x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x240x12x20xf32> loc( |
|
%249 = "onnx.Div"(%248, %70) {onnx_node_name = "Div_110"} : (tensor<1x240x12x20xf32>, tensor<f32>) -> tensor<1x240x12x20xf32> loc( |
|
%250 = "onnx.Mul"(%246, %249) {onnx_node_name = "Mul_111"} : (tensor<1x240x12x20xf32>, tensor<1x240x12x20xf32>) -> tensor<1x240x12x20xf32> loc( |
|
%251 = "onnx.Conv"(%250, %116, %117) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_112", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x240x12x20xf32>, tensor<80x240x1x1xf32>, tensor<80xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%252 = "onnx.Conv"(%251, %118, %119) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_113", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x80x12x20xf32>, tensor<200x80x1x1xf32>, tensor<200xf32>) -> tensor<1x200x12x20xf32> loc( |
|
%253 = "onnx.Add"(%252, %71) {onnx_node_name = "Add_115"} : (tensor<1x200x12x20xf32>, tensor<f32>) -> tensor<1x200x12x20xf32> loc( |
|
%254 = "onnx.Clip"(%253, %69, %70) {onnx_node_name = "Clip_118_42"} : (tensor<1x200x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x200x12x20xf32> loc( |
|
%255 = "onnx.Div"(%254, %70) {onnx_node_name = "Div_120"} : (tensor<1x200x12x20xf32>, tensor<f32>) -> tensor<1x200x12x20xf32> loc( |
|
%256 = "onnx.Mul"(%252, %255) {onnx_node_name = "Mul_121"} : (tensor<1x200x12x20xf32>, tensor<1x200x12x20xf32>) -> tensor<1x200x12x20xf32> loc( |
|
%257 = "onnx.Conv"(%256, %120, %121) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 200 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_122", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x200x12x20xf32>, tensor<200x1x3x3xf32>, tensor<200xf32>) -> tensor<1x200x12x20xf32> loc( |
|
%258 = "onnx.Add"(%257, %71) {onnx_node_name = "Add_124"} : (tensor<1x200x12x20xf32>, tensor<f32>) -> tensor<1x200x12x20xf32> loc( |
|
%259 = "onnx.Clip"(%258, %69, %70) {onnx_node_name = "Clip_127_39"} : (tensor<1x200x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x200x12x20xf32> loc( |
|
%260 = "onnx.Div"(%259, %70) {onnx_node_name = "Div_129"} : (tensor<1x200x12x20xf32>, tensor<f32>) -> tensor<1x200x12x20xf32> loc( |
|
%261 = "onnx.Mul"(%257, %260) {onnx_node_name = "Mul_130"} : (tensor<1x200x12x20xf32>, tensor<1x200x12x20xf32>) -> tensor<1x200x12x20xf32> loc( |
|
%262 = "onnx.Conv"(%261, %122, %123) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_131", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x200x12x20xf32>, tensor<80x200x1x1xf32>, tensor<80xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%263 = "onnx.Add"(%262, %251) {onnx_node_name = "Add_132"} : (tensor<1x80x12x20xf32>, tensor<1x80x12x20xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%264 = "onnx.Conv"(%263, %7, %8) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_133", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x80x12x20xf32>, tensor<184x80x1x1xf32>, tensor<184xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%265 = "onnx.Add"(%264, %71) {onnx_node_name = "Add_135"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%266 = "onnx.Clip"(%265, %69, %70) {onnx_node_name = "Clip_138_46"} : (tensor<1x184x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%267 = "onnx.Div"(%266, %70) {onnx_node_name = "Div_140"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%268 = "onnx.Mul"(%264, %267) {onnx_node_name = "Mul_141"} : (tensor<1x184x12x20xf32>, tensor<1x184x12x20xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%269 = "onnx.Conv"(%268, %9, %10) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 184 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_142", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x184x12x20xf32>, tensor<184x1x3x3xf32>, tensor<184xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%270 = "onnx.Add"(%269, %71) {onnx_node_name = "Add_144"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%271 = "onnx.Clip"(%270, %69, %70) {onnx_node_name = "Clip_147_7"} : (tensor<1x184x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%272 = "onnx.Div"(%271, %70) {onnx_node_name = "Div_149"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%273 = "onnx.Mul"(%269, %272) {onnx_node_name = "Mul_150"} : (tensor<1x184x12x20xf32>, tensor<1x184x12x20xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%274 = "onnx.Conv"(%273, %11, %12) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_151", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x184x12x20xf32>, tensor<80x184x1x1xf32>, tensor<80xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%275 = "onnx.Add"(%274, %263) {onnx_node_name = "Add_152"} : (tensor<1x80x12x20xf32>, tensor<1x80x12x20xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%276 = "onnx.Conv"(%275, %13, %14) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_153", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x80x12x20xf32>, tensor<184x80x1x1xf32>, tensor<184xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%277 = "onnx.Add"(%276, %71) {onnx_node_name = "Add_155"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%278 = "onnx.Clip"(%277, %69, %70) {onnx_node_name = "Clip_158_24"} : (tensor<1x184x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%279 = "onnx.Div"(%278, %70) {onnx_node_name = "Div_160"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%280 = "onnx.Mul"(%276, %279) {onnx_node_name = "Mul_161"} : (tensor<1x184x12x20xf32>, tensor<1x184x12x20xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%281 = "onnx.Conv"(%280, %15, %16) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 184 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_162", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x184x12x20xf32>, tensor<184x1x3x3xf32>, tensor<184xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%282 = "onnx.Add"(%281, %71) {onnx_node_name = "Add_164"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%283 = "onnx.Clip"(%282, %69, %70) {onnx_node_name = "Clip_167_37"} : (tensor<1x184x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%284 = "onnx.Div"(%283, %70) {onnx_node_name = "Div_169"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%285 = "onnx.Mul"(%281, %284) {onnx_node_name = "Mul_170"} : (tensor<1x184x12x20xf32>, tensor<1x184x12x20xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%286 = "onnx.Conv"(%285, %17, %18) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_171", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x184x12x20xf32>, tensor<80x184x1x1xf32>, tensor<80xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%287 = "onnx.Add"(%286, %275) {onnx_node_name = "Add_172"} : (tensor<1x80x12x20xf32>, tensor<1x80x12x20xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%288 = "onnx.Conv"(%287, %19, %20) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_173", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x80x12x20xf32>, tensor<480x80x1x1xf32>, tensor<480xf32>) -> tensor<1x480x12x20xf32> loc( |
|
%289 = "onnx.Add"(%288, %71) {onnx_node_name = "Add_175"} : (tensor<1x480x12x20xf32>, tensor<f32>) -> tensor<1x480x12x20xf32> loc( |
|
%290 = "onnx.Clip"(%289, %69, %70) {onnx_node_name = "Clip_178_50"} : (tensor<1x480x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x480x12x20xf32> loc( |
|
%291 = "onnx.Div"(%290, %70) {onnx_node_name = "Div_180"} : (tensor<1x480x12x20xf32>, tensor<f32>) -> tensor<1x480x12x20xf32> loc( |
|
%292 = "onnx.Mul"(%288, %291) {onnx_node_name = "Mul_181"} : (tensor<1x480x12x20xf32>, tensor<1x480x12x20xf32>) -> tensor<1x480x12x20xf32> loc( |
|
%293 = "onnx.Conv"(%292, %21, %22) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 480 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_182", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x480x12x20xf32>, tensor<480x1x3x3xf32>, tensor<480xf32>) -> tensor<1x480x12x20xf32> loc( |
|
%294 = "onnx.Add"(%293, %71) {onnx_node_name = "Add_184"} : (tensor<1x480x12x20xf32>, tensor<f32>) -> tensor<1x480x12x20xf32> loc( |
|
%295 = "onnx.Clip"(%294, %69, %70) {onnx_node_name = "Clip_187_0"} : (tensor<1x480x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x480x12x20xf32> loc( |
|
%296 = "onnx.Div"(%295, %70) {onnx_node_name = "Div_189"} : (tensor<1x480x12x20xf32>, tensor<f32>) -> tensor<1x480x12x20xf32> loc( |
|
%297 = "onnx.Mul"(%293, %296) {onnx_node_name = "Mul_190"} : (tensor<1x480x12x20xf32>, tensor<1x480x12x20xf32>) -> tensor<1x480x12x20xf32> loc( |
|
%298 = "onnx.ReduceMeanV13"(%297) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_191_26"} : (tensor<1x480x12x20xf32>) -> tensor<1x480x1x1xf32> loc( |
|
%299 = "onnx.Conv"(%298, %126, %125) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_192", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x480x1x1xf32>, tensor<120x480x1x1xf32>, tensor<120xf32>) -> tensor<1x120x1x1xf32> loc( |
|
%300 = "onnx.Relu"(%299) {onnx_node_name = "Relu_193"} : (tensor<1x120x1x1xf32>) -> tensor<1x120x1x1xf32> loc( |
|
%301 = "onnx.Conv"(%300, %128, %127) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_194", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x120x1x1xf32>, tensor<480x120x1x1xf32>, tensor<480xf32>) -> tensor<1x480x1x1xf32> loc( |
|
%302 = "onnx.Add"(%301, %71) {onnx_node_name = "Add_196"} : (tensor<1x480x1x1xf32>, tensor<f32>) -> tensor<1x480x1x1xf32> loc( |
|
%303 = "onnx.Clip"(%302, %69, %70) {onnx_node_name = "Clip_199_43"} : (tensor<1x480x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x480x1x1xf32> loc( |
|
%304 = "onnx.Div"(%303, %70) {onnx_node_name = "Div_201"} : (tensor<1x480x1x1xf32>, tensor<f32>) -> tensor<1x480x1x1xf32> loc( |
|
%305 = "onnx.Mul"(%304, %297) {onnx_node_name = "Mul_202"} : (tensor<1x480x1x1xf32>, tensor<1x480x12x20xf32>) -> tensor<1x480x12x20xf32> loc( |
|
%306 = "onnx.Conv"(%305, %23, %24) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_203", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x480x12x20xf32>, tensor<112x480x1x1xf32>, tensor<112xf32>) -> tensor<1x112x12x20xf32> loc( |
|
%307 = "onnx.Conv"(%306, %25, %26) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_204", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x112x12x20xf32>, tensor<672x112x1x1xf32>, tensor<672xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%308 = "onnx.Add"(%307, %71) {onnx_node_name = "Add_206"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%309 = "onnx.Clip"(%308, %69, %70) {onnx_node_name = "Clip_209_28"} : (tensor<1x672x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%310 = "onnx.Div"(%309, %70) {onnx_node_name = "Div_211"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%311 = "onnx.Mul"(%307, %310) {onnx_node_name = "Mul_212"} : (tensor<1x672x12x20xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%312 = "onnx.Conv"(%311, %27, %28) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 672 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_213", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x672x12x20xf32>, tensor<672x1x3x3xf32>, tensor<672xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%313 = "onnx.Add"(%312, %71) {onnx_node_name = "Add_215"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%314 = "onnx.Clip"(%313, %69, %70) {onnx_node_name = "Clip_218_25"} : (tensor<1x672x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%315 = "onnx.Div"(%314, %70) {onnx_node_name = "Div_220"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%316 = "onnx.Mul"(%312, %315) {onnx_node_name = "Mul_221"} : (tensor<1x672x12x20xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%317 = "onnx.ReduceMeanV13"(%316) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_222_47"} : (tensor<1x672x12x20xf32>) -> tensor<1x672x1x1xf32> loc( |
|
%318 = "onnx.Conv"(%317, %130, %129) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_223", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x672x1x1xf32>, tensor<168x672x1x1xf32>, tensor<168xf32>) -> tensor<1x168x1x1xf32> loc( |
|
%319 = "onnx.Relu"(%318) {onnx_node_name = "Relu_224"} : (tensor<1x168x1x1xf32>) -> tensor<1x168x1x1xf32> loc( |
|
%320 = "onnx.Conv"(%319, %132, %131) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_225", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x168x1x1xf32>, tensor<672x168x1x1xf32>, tensor<672xf32>) -> tensor<1x672x1x1xf32> loc( |
|
%321 = "onnx.Add"(%320, %71) {onnx_node_name = "Add_227"} : (tensor<1x672x1x1xf32>, tensor<f32>) -> tensor<1x672x1x1xf32> loc( |
|
%322 = "onnx.Clip"(%321, %69, %70) {onnx_node_name = "Clip_230_27"} : (tensor<1x672x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x672x1x1xf32> loc( |
|
%323 = "onnx.Div"(%322, %70) {onnx_node_name = "Div_232"} : (tensor<1x672x1x1xf32>, tensor<f32>) -> tensor<1x672x1x1xf32> loc( |
|
%324 = "onnx.Mul"(%323, %316) {onnx_node_name = "Mul_233"} : (tensor<1x672x1x1xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%325 = "onnx.Conv"(%324, %29, %30) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_234", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x672x12x20xf32>, tensor<112x672x1x1xf32>, tensor<112xf32>) -> tensor<1x112x12x20xf32> loc( |
|
%326 = "onnx.Add"(%325, %306) {onnx_node_name = "Add_235"} : (tensor<1x112x12x20xf32>, tensor<1x112x12x20xf32>) -> tensor<1x112x12x20xf32> loc( |
|
%327 = "onnx.Conv"(%326, %31, %32) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_236", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x112x12x20xf32>, tensor<672x112x1x1xf32>, tensor<672xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%328 = "onnx.Add"(%327, %71) {onnx_node_name = "Add_238"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%329 = "onnx.Clip"(%328, %69, %70) {onnx_node_name = "Clip_241_35"} : (tensor<1x672x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%330 = "onnx.Div"(%329, %70) {onnx_node_name = "Div_243"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%331 = "onnx.Mul"(%327, %330) {onnx_node_name = "Mul_244"} : (tensor<1x672x12x20xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%332 = "onnx.Conv"(%331, %33, %34) { |
|
auto_pad = "NOTSET", |
|
dilations = [2, 2], |
|
group = 672 : si64, |
|
kernel_shape = [5, 5], |
|
onnx_node_name = "Conv_245", |
|
pads = [4, 4, 4, 4], |
|
strides = [1, 1]} : (tensor<1x672x12x20xf32>, tensor<672x1x5x5xf32>, tensor<672xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%333 = "onnx.Add"(%332, %71) {onnx_node_name = "Add_247"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%334 = "onnx.Clip"(%333, %69, %70) {onnx_node_name = "Clip_250_40"} : (tensor<1x672x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%335 = "onnx.Div"(%334, %70) {onnx_node_name = "Div_252"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%336 = "onnx.Mul"(%332, %335) {onnx_node_name = "Mul_253"} : (tensor<1x672x12x20xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%337 = "onnx.ReduceMeanV13"(%336) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_254_19"} : (tensor<1x672x12x20xf32>) -> tensor<1x672x1x1xf32> loc( |
|
%338 = "onnx.Conv"(%337, %134, %133) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_255", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x672x1x1xf32>, tensor<168x672x1x1xf32>, tensor<168xf32>) -> tensor<1x168x1x1xf32> loc( |
|
%339 = "onnx.Relu"(%338) {onnx_node_name = "Relu_256"} : (tensor<1x168x1x1xf32>) -> tensor<1x168x1x1xf32> loc( |
|
%340 = "onnx.Conv"(%339, %136, %135) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_257", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x168x1x1xf32>, tensor<672x168x1x1xf32>, tensor<672xf32>) -> tensor<1x672x1x1xf32> loc( |
|
%341 = "onnx.Add"(%340, %71) {onnx_node_name = "Add_259"} : (tensor<1x672x1x1xf32>, tensor<f32>) -> tensor<1x672x1x1xf32> loc( |
|
%342 = "onnx.Clip"(%341, %69, %70) {onnx_node_name = "Clip_262_49"} : (tensor<1x672x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x672x1x1xf32> loc( |
|
%343 = "onnx.Div"(%342, %70) {onnx_node_name = "Div_264"} : (tensor<1x672x1x1xf32>, tensor<f32>) -> tensor<1x672x1x1xf32> loc( |
|
%344 = "onnx.Mul"(%343, %336) {onnx_node_name = "Mul_265"} : (tensor<1x672x1x1xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%345 = "onnx.Conv"(%344, %35, %36) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_266", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x672x12x20xf32>, tensor<160x672x1x1xf32>, tensor<160xf32>) -> tensor<1x160x12x20xf32> loc( |
|
%346 = "onnx.Conv"(%345, %37, %38) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_267", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x160x12x20xf32>, tensor<960x160x1x1xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%347 = "onnx.Add"(%346, %71) {onnx_node_name = "Add_269"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%348 = "onnx.Clip"(%347, %69, %70) {onnx_node_name = "Clip_272_20"} : (tensor<1x960x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%349 = "onnx.Div"(%348, %70) {onnx_node_name = "Div_274"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%350 = "onnx.Mul"(%346, %349) {onnx_node_name = "Mul_275"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%351 = "onnx.Conv"(%350, %39, %40) { |
|
auto_pad = "NOTSET", |
|
dilations = [2, 2], |
|
group = 960 : si64, |
|
kernel_shape = [5, 5], |
|
onnx_node_name = "Conv_276", |
|
pads = [4, 4, 4, 4], |
|
strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<960x1x5x5xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%352 = "onnx.Add"(%351, %71) {onnx_node_name = "Add_278"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%353 = "onnx.Clip"(%352, %69, %70) {onnx_node_name = "Clip_281_2"} : (tensor<1x960x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%354 = "onnx.Div"(%353, %70) {onnx_node_name = "Div_283"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%355 = "onnx.Mul"(%351, %354) {onnx_node_name = "Mul_284"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%356 = "onnx.ReduceMeanV13"(%355) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_285_9"} : (tensor<1x960x12x20xf32>) -> tensor<1x960x1x1xf32> loc( |
|
%357 = "onnx.Conv"(%356, %138, %137) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_286", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x960x1x1xf32>, tensor<240x960x1x1xf32>, tensor<240xf32>) -> tensor<1x240x1x1xf32> loc( |
|
%358 = "onnx.Relu"(%357) {onnx_node_name = "Relu_287"} : (tensor<1x240x1x1xf32>) -> tensor<1x240x1x1xf32> loc( |
|
%359 = "onnx.Conv"(%358, %140, %139) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_288", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x240x1x1xf32>, tensor<960x240x1x1xf32>, tensor<960xf32>) -> tensor<1x960x1x1xf32> loc( |
|
%360 = "onnx.Add"(%359, %71) {onnx_node_name = "Add_290"} : (tensor<1x960x1x1xf32>, tensor<f32>) -> tensor<1x960x1x1xf32> loc( |
|
%361 = "onnx.Clip"(%360, %69, %70) {onnx_node_name = "Clip_293_44"} : (tensor<1x960x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x1x1xf32> loc( |
|
%362 = "onnx.Div"(%361, %70) {onnx_node_name = "Div_295"} : (tensor<1x960x1x1xf32>, tensor<f32>) -> tensor<1x960x1x1xf32> loc( |
|
%363 = "onnx.Mul"(%362, %355) {onnx_node_name = "Mul_296"} : (tensor<1x960x1x1xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%364 = "onnx.Conv"(%363, %41, %42) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_297", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<160x960x1x1xf32>, tensor<160xf32>) -> tensor<1x160x12x20xf32> loc( |
|
%365 = "onnx.Add"(%364, %345) {onnx_node_name = "Add_298"} : (tensor<1x160x12x20xf32>, tensor<1x160x12x20xf32>) -> tensor<1x160x12x20xf32> loc( |
|
%366 = "onnx.Conv"(%365, %43, %44) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_299", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x160x12x20xf32>, tensor<960x160x1x1xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%367 = "onnx.Add"(%366, %71) {onnx_node_name = "Add_301"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%368 = "onnx.Clip"(%367, %69, %70) {onnx_node_name = "Clip_304_21"} : (tensor<1x960x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%369 = "onnx.Div"(%368, %70) {onnx_node_name = "Div_306"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%370 = "onnx.Mul"(%366, %369) {onnx_node_name = "Mul_307"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%371 = "onnx.Conv"(%370, %45, %46) { |
|
auto_pad = "NOTSET", |
|
dilations = [2, 2], |
|
group = 960 : si64, |
|
kernel_shape = [5, 5], |
|
onnx_node_name = "Conv_308", |
|
pads = [4, 4, 4, 4], |
|
strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<960x1x5x5xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%372 = "onnx.Add"(%371, %71) {onnx_node_name = "Add_310"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%373 = "onnx.Clip"(%372, %69, %70) {onnx_node_name = "Clip_313_22"} : (tensor<1x960x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%374 = "onnx.Div"(%373, %70) {onnx_node_name = "Div_315"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%375 = "onnx.Mul"(%371, %374) {onnx_node_name = "Mul_316"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%376 = "onnx.ReduceMeanV13"(%375) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_317_8"} : (tensor<1x960x12x20xf32>) -> tensor<1x960x1x1xf32> loc( |
|
%377 = "onnx.Conv"(%376, %142, %141) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_318", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x960x1x1xf32>, tensor<240x960x1x1xf32>, tensor<240xf32>) -> tensor<1x240x1x1xf32> loc( |
|
%378 = "onnx.Relu"(%377) {onnx_node_name = "Relu_319"} : (tensor<1x240x1x1xf32>) -> tensor<1x240x1x1xf32> loc( |
|
%379 = "onnx.Conv"(%378, %144, %143) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_320", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x240x1x1xf32>, tensor<960x240x1x1xf32>, tensor<960xf32>) -> tensor<1x960x1x1xf32> loc( |
|
%380 = "onnx.Add"(%379, %71) {onnx_node_name = "Add_322"} : (tensor<1x960x1x1xf32>, tensor<f32>) -> tensor<1x960x1x1xf32> loc( |
|
%381 = "onnx.Clip"(%380, %69, %70) {onnx_node_name = "Clip_325_3"} : (tensor<1x960x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x1x1xf32> loc( |
|
%382 = "onnx.Div"(%381, %70) {onnx_node_name = "Div_327"} : (tensor<1x960x1x1xf32>, tensor<f32>) -> tensor<1x960x1x1xf32> loc( |
|
%383 = "onnx.Mul"(%382, %375) {onnx_node_name = "Mul_328"} : (tensor<1x960x1x1xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%384 = "onnx.Conv"(%383, %47, %48) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_329", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<160x960x1x1xf32>, tensor<160xf32>) -> tensor<1x160x12x20xf32> loc( |
|
%385 = "onnx.Add"(%384, %365) {onnx_node_name = "Add_330"} : (tensor<1x160x12x20xf32>, tensor<1x160x12x20xf32>) -> tensor<1x160x12x20xf32> loc( |
|
%386 = "onnx.Conv"(%385, %49, %50) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_331", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x160x12x20xf32>, tensor<960x160x1x1xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%387 = "onnx.Add"(%386, %71) {onnx_node_name = "Add_333"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%388 = "onnx.Clip"(%387, %69, %70) {onnx_node_name = "Clip_336_53"} : (tensor<1x960x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%389 = "onnx.Div"(%388, %70) {onnx_node_name = "Div_338"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%390 = "onnx.Mul"(%386, %389) {onnx_node_name = "Mul_339"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%391 = "onnx.ReduceMeanV13"(%390) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_342_14"} : (tensor<1x960x12x20xf32>) -> tensor<1x960x1x1xf32> loc( |
|
%392 = "onnx.Conv"(%391, %124, %6) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_343", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x960x1x1xf32>, tensor<128x960x1x1xf32>, none) -> tensor<1x128x1x1xf32> loc( |
|
%393 = "onnx.Sigmoid"(%392) {onnx_node_name = "Sigmoid_344"} : (tensor<1x128x1x1xf32>) -> tensor<1x128x1x1xf32> loc( |
|
%394 = "onnx.Conv"(%390, %51, %52) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_340", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<128x960x1x1xf32>, tensor<128xf32>) -> tensor<1x128x12x20xf32> loc( |
|
%395 = "onnx.Relu"(%394) {onnx_node_name = "Relu_341"} : (tensor<1x128x12x20xf32>) -> tensor<1x128x12x20xf32> loc( |
|
%396 = "onnx.Mul"(%395, %393) {onnx_node_name = "Mul_345"} : (tensor<1x128x12x20xf32>, tensor<1x128x1x1xf32>) -> tensor<1x128x12x20xf32> loc( |
|
%397:2 = "onnx.Split"(%396, %5) {axis = 1 : si64, onnx_node_name = "Split_349_17"} : (tensor<1x128x12x20xf32>, tensor<2xi64>) -> (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) loc( |
|
%398 = "onnx.Concat"(%397 |
|
%399 = "onnx.Conv"(%398, %172, %171) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_351", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x128x12x20xf32>, tensor<128x128x3x3xf32>, tensor<128xf32>) -> tensor<1x128x12x20xf32> loc( |
|
%400 = "onnx.Sigmoid"(%399) {onnx_node_name = "Sigmoid_352"} : (tensor<1x128x12x20xf32>) -> tensor<1x128x12x20xf32> loc( |
|
%401:2 = "onnx.Split"(%400, %5) {axis = 1 : si64, onnx_node_name = "Split_353_38"} : (tensor<1x128x12x20xf32>, tensor<2xi64>) -> (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) loc( |
|
%402 = "onnx.Mul"(%401 |
|
%403 = "onnx.Concat"(%397 |
|
%404 = "onnx.Conv"(%403, %170, %169) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_356", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x128x12x20xf32>, tensor<64x128x3x3xf32>, tensor<64xf32>) -> tensor<1x64x12x20xf32> loc( |
|
%405 = "onnx.Tanh"(%404) {onnx_node_name = "Tanh_357"} : (tensor<1x64x12x20xf32>) -> tensor<1x64x12x20xf32> loc( |
|
%406 = "onnx.Mul"(%401 |
|
%407 = "onnx.Sub"(%75, %401 |
|
%408 = "onnx.Mul"(%407, %arg4) {onnx_node_name = "Mul_360"} : (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) -> tensor<1x64x12x20xf32> loc( |
|
%409 = "onnx.Add"(%408, %406) {onnx_node_name = "Add_362"} : (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) -> tensor<1x64x12x20xf32> loc( |
|
%410 = "onnx.Concat"(%397 |
|
%411 = "onnx.Resize"(%410, %6, %64, %6) { |
|
antialias = 0 : si64, |
|
coordinate_transformation_mode = "pytorch_half_pixel", |
|
cubic_coeff_a = -7.500000e-01 : f32, |
|
exclude_outside = 0 : si64, |
|
extrapolation_value = 0.000000e+00 : f32, |
|
keep_aspect_ratio_policy = "stretch", |
|
mode = "linear", |
|
nearest_mode = "floor", |
|
onnx_node_name = "Resize_365_5"} : (tensor<1x128x12x20xf32>, none, tensor<4xf32>, none) -> tensor<1x128x24x40xf32> loc( |
|
%412 = "onnx.Slice"(%411, %67, %72, %63, %74) {onnx_node_name = "Slice_371"} : (tensor<1x128x24x40xf32>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>) -> tensor<1x128x23x40xf32> loc( |
|
%413 = "onnx.AveragePool"(%177) { |
|
auto_pad = "NOTSET", |
|
ceil_mode = 1 : si64, |
|
count_include_pad = 0 : si64, |
|
kernel_shape = [2, 2], |
|
onnx_node_name = "AveragePool_346", |
|
pads = [0, 0, 0, 0], |
|
strides = [2, 2]} : (tensor<1x3x180x320xf32>) -> tensor<1x3x90x160xf32> loc( |
|
%414 = "onnx.AveragePool"(%413) { |
|
auto_pad = "NOTSET", |
|
ceil_mode = 1 : si64, |
|
count_include_pad = 0 : si64, |
|
kernel_shape = [2, 2], |
|
onnx_node_name = "AveragePool_347", |
|
pads = [0, 0, 0, 0], |
|
strides = [2, 2]} : (tensor<1x3x90x160xf32>) -> tensor<1x3x45x80xf32> loc( |
|
%415 = "onnx.AveragePool"(%414) { |
|
auto_pad = "NOTSET", |
|
ceil_mode = 1 : si64, |
|
count_include_pad = 0 : si64, |
|
kernel_shape = [2, 2], |
|
onnx_node_name = "AveragePool_348", |
|
pads = [0, 0, 0, 0], |
|
strides = [2, 2]} : (tensor<1x3x45x80xf32>) -> tensor<1x3x23x40xf32> loc( |
|
%416 = "onnx.Concat"(%412, %240, %415) {axis = 1 : si64, onnx_node_name = "Concat_372"} : (tensor<1x128x23x40xf32>, tensor<1x40x23x40xf32>, tensor<1x3x23x40xf32>) -> tensor<1x171x23x40xf32> loc( |
|
%417 = "onnx.Conv"(%416, %53, %54) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_373", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x171x23x40xf32>, tensor<80x171x3x3xf32>, tensor<80xf32>) -> tensor<1x80x23x40xf32> loc( |
|
%418 = "onnx.Relu"(%417) {onnx_node_name = "Relu_374"} : (tensor<1x80x23x40xf32>) -> tensor<1x80x23x40xf32> loc( |
|
%419:2 = "onnx.Split"(%418, %4) {axis = 1 : si64, onnx_node_name = "Split_375_52"} : (tensor<1x80x23x40xf32>, tensor<2xi64>) -> (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) loc( |
|
%420 = "onnx.Concat"(%419 |
|
%421 = "onnx.Conv"(%420, %168, %167) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_377", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x80x23x40xf32>, tensor<80x80x3x3xf32>, tensor<80xf32>) -> tensor<1x80x23x40xf32> loc( |
|
%422 = "onnx.Sigmoid"(%421) {onnx_node_name = "Sigmoid_378"} : (tensor<1x80x23x40xf32>) -> tensor<1x80x23x40xf32> loc( |
|
%423:2 = "onnx.Split"(%422, %4) {axis = 1 : si64, onnx_node_name = "Split_379_31"} : (tensor<1x80x23x40xf32>, tensor<2xi64>) -> (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) loc( |
|
%424 = "onnx.Mul"(%423 |
|
%425 = "onnx.Concat"(%419 |
|
%426 = "onnx.Conv"(%425, %166, %165) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_382", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x80x23x40xf32>, tensor<40x80x3x3xf32>, tensor<40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%427 = "onnx.Tanh"(%426) {onnx_node_name = "Tanh_383"} : (tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%428 = "onnx.Mul"(%423 |
|
%429 = "onnx.Sub"(%75, %423 |
|
%430 = "onnx.Mul"(%429, %arg3) {onnx_node_name = "Mul_386"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%431 = "onnx.Add"(%430, %428) {onnx_node_name = "Add_388"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%432 = "onnx.Concat"(%419 |
|
%433 = "onnx.Resize"(%432, %6, %64, %6) { |
|
antialias = 0 : si64, |
|
coordinate_transformation_mode = "pytorch_half_pixel", |
|
cubic_coeff_a = -7.500000e-01 : f32, |
|
exclude_outside = 0 : si64, |
|
extrapolation_value = 0.000000e+00 : f32, |
|
keep_aspect_ratio_policy = "stretch", |
|
mode = "linear", |
|
nearest_mode = "floor", |
|
onnx_node_name = "Resize_391_10"} : (tensor<1x80x23x40xf32>, none, tensor<4xf32>, none) -> tensor<1x80x46x80xf32> loc( |
|
%434 = "onnx.Slice"(%433, %67, %73, %63, %74) {onnx_node_name = "Slice_397"} : (tensor<1x80x46x80xf32>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>) -> tensor<1x80x45x80xf32> loc( |
|
%435 = "onnx.Concat"(%434, %199, %414) {axis = 1 : si64, onnx_node_name = "Concat_398"} : (tensor<1x80x45x80xf32>, tensor<1x24x45x80xf32>, tensor<1x3x45x80xf32>) -> tensor<1x107x45x80xf32> loc( |
|
%436 = "onnx.Conv"(%435, %55, %56) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_399", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x107x45x80xf32>, tensor<40x107x3x3xf32>, tensor<40xf32>) -> tensor<1x40x45x80xf32> loc( |
|
%437 = "onnx.Relu"(%436) {onnx_node_name = "Relu_400"} : (tensor<1x40x45x80xf32>) -> tensor<1x40x45x80xf32> loc( |
|
%438:2 = "onnx.Split"(%437, %3) {axis = 1 : si64, onnx_node_name = "Split_401_41"} : (tensor<1x40x45x80xf32>, tensor<2xi64>) -> (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) loc( |
|
%439 = "onnx.Concat"(%438 |
|
%440 = "onnx.Conv"(%439, %164, %163) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_403", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x40x45x80xf32>, tensor<40x40x3x3xf32>, tensor<40xf32>) -> tensor<1x40x45x80xf32> loc( |
|
%441 = "onnx.Sigmoid"(%440) {onnx_node_name = "Sigmoid_404"} : (tensor<1x40x45x80xf32>) -> tensor<1x40x45x80xf32> loc( |
|
%442:2 = "onnx.Split"(%441, %3) {axis = 1 : si64, onnx_node_name = "Split_405_6"} : (tensor<1x40x45x80xf32>, tensor<2xi64>) -> (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) loc( |
|
%443 = "onnx.Mul"(%442 |
|
%444 = "onnx.Concat"(%438 |
|
%445 = "onnx.Conv"(%444, %162, %161) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_408", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x40x45x80xf32>, tensor<20x40x3x3xf32>, tensor<20xf32>) -> tensor<1x20x45x80xf32> loc( |
|
%446 = "onnx.Tanh"(%445) {onnx_node_name = "Tanh_409"} : (tensor<1x20x45x80xf32>) -> tensor<1x20x45x80xf32> loc( |
|
%447 = "onnx.Mul"(%442 |
|
%448 = "onnx.Sub"(%75, %442 |
|
%449 = "onnx.Mul"(%448, %arg2) {onnx_node_name = "Mul_412"} : (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) -> tensor<1x20x45x80xf32> loc( |
|
%450 = "onnx.Add"(%449, %447) {onnx_node_name = "Add_414"} : (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) -> tensor<1x20x45x80xf32> loc( |
|
%451 = "onnx.Concat"(%438 |
|
%452 = "onnx.Resize"(%451, %6, %64, %6) { |
|
antialias = 0 : si64, |
|
coordinate_transformation_mode = "pytorch_half_pixel", |
|
cubic_coeff_a = -7.500000e-01 : f32, |
|
exclude_outside = 0 : si64, |
|
extrapolation_value = 0.000000e+00 : f32, |
|
keep_aspect_ratio_policy = "stretch", |
|
mode = "linear", |
|
nearest_mode = "floor", |
|
onnx_node_name = "Resize_417_15"} : (tensor<1x40x45x80xf32>, none, tensor<4xf32>, none) -> tensor<1x40x90x160xf32> loc( |
|
%453 = "onnx.Concat"(%452, %188, %413) {axis = 1 : si64, onnx_node_name = "Concat_418"} : (tensor<1x40x90x160xf32>, tensor<1x16x90x160xf32>, tensor<1x3x90x160xf32>) -> tensor<1x59x90x160xf32> loc( |
|
%454 = "onnx.Conv"(%453, %57, %58) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_419", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x59x90x160xf32>, tensor<32x59x3x3xf32>, tensor<32xf32>) -> tensor<1x32x90x160xf32> loc( |
|
%455 = "onnx.Relu"(%454) {onnx_node_name = "Relu_420"} : (tensor<1x32x90x160xf32>) -> tensor<1x32x90x160xf32> loc( |
|
%456:2 = "onnx.Split"(%455, %2) {axis = 1 : si64, onnx_node_name = "Split_421_16"} : (tensor<1x32x90x160xf32>, tensor<2xi64>) -> (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) loc( |
|
%457 = "onnx.Concat"(%456 |
|
%458 = "onnx.Conv"(%457, %160, %159) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_423", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x32x90x160xf32>, tensor<32x32x3x3xf32>, tensor<32xf32>) -> tensor<1x32x90x160xf32> loc( |
|
%459 = "onnx.Sigmoid"(%458) {onnx_node_name = "Sigmoid_424"} : (tensor<1x32x90x160xf32>) -> tensor<1x32x90x160xf32> loc( |
|
%460:2 = "onnx.Split"(%459, %2) {axis = 1 : si64, onnx_node_name = "Split_425_23"} : (tensor<1x32x90x160xf32>, tensor<2xi64>) -> (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) loc( |
|
%461 = "onnx.Mul"(%460 |
|
%462 = "onnx.Concat"(%456 |
|
%463 = "onnx.Conv"(%462, %158, %157) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_428", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x32x90x160xf32>, tensor<16x32x3x3xf32>, tensor<16xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%464 = "onnx.Tanh"(%463) {onnx_node_name = "Tanh_429"} : (tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%465 = "onnx.Mul"(%460 |
|
%466 = "onnx.Sub"(%75, %460 |
|
%467 = "onnx.Mul"(%466, %arg1) {onnx_node_name = "Mul_432"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%468 = "onnx.Add"(%467, %465) {onnx_node_name = "Add_434"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%469 = "onnx.Concat"(%456 |
|
%470 = "onnx.Resize"(%469, %6, %64, %6) { |
|
antialias = 0 : si64, |
|
coordinate_transformation_mode = "pytorch_half_pixel", |
|
cubic_coeff_a = -7.500000e-01 : f32, |
|
exclude_outside = 0 : si64, |
|
extrapolation_value = 0.000000e+00 : f32, |
|
keep_aspect_ratio_policy = "stretch", |
|
mode = "linear", |
|
nearest_mode = "floor", |
|
onnx_node_name = "Resize_437_11"} : (tensor<1x32x90x160xf32>, none, tensor<4xf32>, none) -> tensor<1x32x180x320xf32> loc( |
|
%471 = "onnx.Concat"(%470, %177) {axis = 1 : si64, onnx_node_name = "Concat_438"} : (tensor<1x32x180x320xf32>, tensor<1x3x180x320xf32>) -> tensor<1x35x180x320xf32> loc( |
|
%472 = "onnx.Conv"(%471, %59, %60) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_439", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x35x180x320xf32>, tensor<16x35x3x3xf32>, tensor<16xf32>) -> tensor<1x16x180x320xf32> loc( |
|
%473 = "onnx.Relu"(%472) {onnx_node_name = "Relu_440"} : (tensor<1x16x180x320xf32>) -> tensor<1x16x180x320xf32> loc( |
|
%474 = "onnx.Conv"(%473, %61, %62) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_441", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x16x180x320xf32>, tensor<16x16x3x3xf32>, tensor<16xf32>) -> tensor<1x16x180x320xf32> loc( |
|
%475 = "onnx.Relu"(%474) {onnx_node_name = "Relu_442"} : (tensor<1x16x180x320xf32>) -> tensor<1x16x180x320xf32> loc( |
|
%476 = "onnx.Conv"(%475, %174, %173) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_443", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x16x180x320xf32>, tensor<4x16x1x1xf32>, tensor<4xf32>) -> tensor<1x4x180x320xf32> loc( |
|
%477:2 = "onnx.Split"(%476, %1) {axis = 1 : si64, onnx_node_name = "Split_444_34"} : (tensor<1x4x180x320xf32>, tensor<2xi64>) -> (tensor<1x3x180x320xf32>, tensor<1x1x180x320xf32>) loc( |
|
%478 = "onnx.Clip"(%477 |
|
%479 = "onnx.Add"(%477 |
|
%480 = "onnx.Clip"(%479, %69, %75) {onnx_node_name = "Clip_446_1"} : (tensor<1x3x180x320xf32>, tensor<f32>, tensor<f32>) -> tensor<1x3x180x320xf32> loc( |
|
return %478, %468, %450, %431, %409, %480 : tensor<1x1x180x320xf32>, tensor<1x16x90x160xf32>, tensor<1x20x45x80xf32>, tensor<1x40x23x40xf32>, tensor<1x64x12x20xf32>, tensor<1x3x180x320xf32> loc( |
|
} loc( |
|
"onnx.EntryPoint"() {func = @main_graph} : () -> () loc( |
|
} loc( |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|