Zigeng commited on
Commit
33a3dda
·
verified ·
1 Parent(s): 60c1242

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -28
README.md CHANGED
@@ -175,34 +175,6 @@ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
175
  print(response)
176
  ```
177
 
178
- ## 🔥 Training
179
- ### 1. Training with LoRA:
180
- We provide training scripts for our proposed supervised verification fine-tuning approach. The implementation utilizes LoRA during the training process, with the configuration details specified in [config_lora_r1_7b.yaml](https://github.com/czg1225/VeriThinker/blob/main/config/config_lora_r1_7b.yaml).
181
- ```bash
182
- deepspeed --include localhost:0,1,2,3,4,5,6,7 train_svft.py
183
- ```
184
-
185
- ### 2. LoRA Merge:
186
- After training, merge the LoRA weights to get the reasoning model.
187
- ```bash
188
- python merge_lora.py
189
- ```
190
-
191
- ## ⚡ Evaluation:
192
- We provide evaluation scripts for three mathematical datasets: MATH500, AIME 2024, and AIME 2025. Our implementation leverages the [vLLM](https://docs.vllm.ai/en/latest/) framework to ensure efficient inference during evaluation.
193
-
194
- ### 1. Evaluation on MATH500 Dataset
195
- ```bash
196
- CUDA_VISIBLE_DEVICES=0,1,2,3 python eval_math500.py
197
- ```
198
- ### 2. Evaluation on AIME 2024 Dataset
199
- ```bash
200
- CUDA_VISIBLE_DEVICES=0,1,2,3 python eval_aime24.py
201
- ```
202
- ### 3. Evaluation on AIME 2025 Dataset
203
- ```bash
204
- CUDA_VISIBLE_DEVICES=0,1,2,3 python eval_aime25.py
205
- ```
206
 
207
  ## 📖 Experimental Results
208
  ### CoT Compression Results:
 
175
  print(response)
176
  ```
177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
 
179
  ## 📖 Experimental Results
180
  ### CoT Compression Results: