Update README.md
Browse files
README.md
CHANGED
@@ -175,34 +175,6 @@ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
175 |
print(response)
|
176 |
```
|
177 |
|
178 |
-
## 🔥 Training
|
179 |
-
### 1. Training with LoRA:
|
180 |
-
We provide training scripts for our proposed supervised verification fine-tuning approach. The implementation utilizes LoRA during the training process, with the configuration details specified in [config_lora_r1_7b.yaml](https://github.com/czg1225/VeriThinker/blob/main/config/config_lora_r1_7b.yaml).
|
181 |
-
```bash
|
182 |
-
deepspeed --include localhost:0,1,2,3,4,5,6,7 train_svft.py
|
183 |
-
```
|
184 |
-
|
185 |
-
### 2. LoRA Merge:
|
186 |
-
After training, merge the LoRA weights to get the reasoning model.
|
187 |
-
```bash
|
188 |
-
python merge_lora.py
|
189 |
-
```
|
190 |
-
|
191 |
-
## ⚡ Evaluation:
|
192 |
-
We provide evaluation scripts for three mathematical datasets: MATH500, AIME 2024, and AIME 2025. Our implementation leverages the [vLLM](https://docs.vllm.ai/en/latest/) framework to ensure efficient inference during evaluation.
|
193 |
-
|
194 |
-
### 1. Evaluation on MATH500 Dataset
|
195 |
-
```bash
|
196 |
-
CUDA_VISIBLE_DEVICES=0,1,2,3 python eval_math500.py
|
197 |
-
```
|
198 |
-
### 2. Evaluation on AIME 2024 Dataset
|
199 |
-
```bash
|
200 |
-
CUDA_VISIBLE_DEVICES=0,1,2,3 python eval_aime24.py
|
201 |
-
```
|
202 |
-
### 3. Evaluation on AIME 2025 Dataset
|
203 |
-
```bash
|
204 |
-
CUDA_VISIBLE_DEVICES=0,1,2,3 python eval_aime25.py
|
205 |
-
```
|
206 |
|
207 |
## 📖 Experimental Results
|
208 |
### CoT Compression Results:
|
|
|
175 |
print(response)
|
176 |
```
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
## 📖 Experimental Results
|
180 |
### CoT Compression Results:
|