Upload folder using huggingface_hub
Browse files- README.md +325 -0
- dw-ll_ucoco_384.onnx +3 -0
- yolox_l.onnx +3 -0
README.md
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# UniAnimate-DiT: Human Image Animation with Large-Scaled Video Diffusion Transformer
|
2 |
+
|
3 |
+
This repo contains checkpoints for UniAnimate-DiT:
|
4 |
+
|
5 |
+
- UniAnimate-Wan2.1-14B-Lora-12000.ckpt: the weights of LoRAs and additional learnable modules with 12000 training steps.
|
6 |
+
|
7 |
+
- dw-ll_ucoco_384.onnx: dwpose model used for pose extraction.
|
8 |
+
|
9 |
+
- yolox_l.onnx: model used for pose extraction.
|
10 |
+
|
11 |
+
|
12 |
+
# UniAnimate-DiT
|
13 |
+
|
14 |
+
An expanded version of [UniAnimate](https://arxiv.org/abs/2406.01188) based on [Wan2.1](https://github.com/Wan-Video/Wan2.1)
|
15 |
+
|
16 |
+
UniAnimate-DiT is based on a state-of-the-art DiT-based Wan2.1-14B-I2V model for consistent human image animation. Wan2.1 is a collection of video synthesis models open-sourced by Alibaba. Our code is based on [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio), thanks for the nice open-sourced project.
|
17 |
+
|
18 |
+
|
19 |
+
<table>
|
20 |
+
<center>
|
21 |
+
<tr>
|
22 |
+
<!-- <td width=25% style="border: none"> -->
|
23 |
+
<td ><center>
|
24 |
+
<video height="260" controls autoplay loop src="https://cloud.video.taobao.com/vod/wuGhP_lx9FMOZcibpgPg3HAFQXRt2cPSQPMkG2mxQGw.mp4" muted="false"></video>
|
25 |
+
</td>
|
26 |
+
<td ><center>
|
27 |
+
<video height="260" controls autoplay loop src="https://cloud.video.taobao.com/vod/K4lR1PGHnWYc7X6-e8dkZ_60TCr0_6Gqjc3rT6CW7Xw.mp4" muted="false"></video>
|
28 |
+
</td>
|
29 |
+
</tr>
|
30 |
+
</table>
|
31 |
+
|
32 |
+
|
33 |
+
## Getting Started with UniAnimate-DiT
|
34 |
+
|
35 |
+
|
36 |
+
### (1) Installation
|
37 |
+
|
38 |
+
Before using this model, please create the conda environment and install DiffSynth-Studio from **source code**.
|
39 |
+
|
40 |
+
```shell
|
41 |
+
conda create -n UniAnimate-Wan python=3.9.21
|
42 |
+
conda activate UniAnimate-Wan
|
43 |
+
|
44 |
+
# CUDA 11.8
|
45 |
+
pip install torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cu118
|
46 |
+
# CUDA 12.1
|
47 |
+
pip install torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cu121
|
48 |
+
# CUDA 12.4
|
49 |
+
pip install torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cu124
|
50 |
+
|
51 |
+
git clone https://github.com/ali-vilab/UniAnimate-DiT.git
|
52 |
+
cd UniAnimate-DiT
|
53 |
+
pip install -e .
|
54 |
+
```
|
55 |
+
|
56 |
+
UniAnimate-DiT supports multiple Attention implementations. If you have installed any of the following Attention implementations, they will be enabled based on priority.
|
57 |
+
|
58 |
+
* [Flash Attention 3](https://github.com/Dao-AILab/flash-attention)
|
59 |
+
* [Flash Attention 2](https://github.com/Dao-AILab/flash-attention)
|
60 |
+
* [Sage Attention](https://github.com/thu-ml/SageAttention)
|
61 |
+
* [torch SDPA](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html) (default. `torch>=2.5.0` is recommended.)
|
62 |
+
|
63 |
+
## Inference
|
64 |
+
|
65 |
+
|
66 |
+
### (2) Download the pretrained checkpoints
|
67 |
+
|
68 |
+
Download Wan2.1-14B-I2V-720P models using huggingface-cli:
|
69 |
+
```
|
70 |
+
pip install "huggingface_hub[cli]"
|
71 |
+
huggingface-cli download Wan-AI/Wan2.1-I2V-14B-720P --local-dir ./Wan2.1-I2V-14B-720P
|
72 |
+
```
|
73 |
+
|
74 |
+
Or download Wan2.1-14B-I2V-720P models using modelscope-cli:
|
75 |
+
```
|
76 |
+
pip install modelscope
|
77 |
+
modelscope download Wan-AI/Wan2.1-I2V-14B-720P --local_dir ./Wan2.1-I2V-14B-720P
|
78 |
+
```
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
Download pretrained UniAnimate-DiT models (only include the weights of lora and additional learnable modules):
|
84 |
+
```
|
85 |
+
pip install modelscope
|
86 |
+
modelscope download xiaolaowx/UniAnimate-DiT --local_dir ./checkpoints
|
87 |
+
```
|
88 |
+
|
89 |
+
Finally, the model weights will be organized in `./checkpoints/` as follows:
|
90 |
+
```
|
91 |
+
./checkpoints/
|
92 |
+
|---- dw-ll_ucoco_384.onnx
|
93 |
+
|---- UniAnimate-Wan2.1-14B-Lora-12000.ckpt
|
94 |
+
β---- yolox_l.onnx
|
95 |
+
```
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
### (3) Pose alignment
|
101 |
+
|
102 |
+
Rescale the target pose sequence to match the pose of the reference image (you can also install `pip install onnxruntime-gpu==1.18.1` for faster extraction on GPU.):
|
103 |
+
```
|
104 |
+
# reference image 1
|
105 |
+
python run_align_pose.py --ref_name data/images/WOMEN-Blouses_Shirts-id_00004955-01_4_full.jpg --source_video_paths data/videos/source_video.mp4 --saved_pose_dir data/saved_pose/WOMEN-Blouses_Shirts-id_00004955-01_4_full
|
106 |
+
|
107 |
+
# reference image 2
|
108 |
+
python run_align_pose.py --ref_name data/images/musk.jpg --source_video_paths data/videos/source_video.mp4 --saved_pose_dir data/saved_pose/musk
|
109 |
+
|
110 |
+
# reference image 3
|
111 |
+
python run_align_pose.py --ref_name data/images/WOMEN-Blouses_Shirts-id_00005125-03_4_full.jpg --source_video_paths data/videos/source_video.mp4 --saved_pose_dir data/saved_pose/WOMEN-Blouses_Shirts-id_00005125-03_4_full
|
112 |
+
|
113 |
+
# reference image 4
|
114 |
+
python run_align_pose.py --ref_name data/images/IMG_20240514_104337.jpg --source_video_paths data/videos/source_video.mp4 --saved_pose_dir data/saved_pose/IMG_20240514_104337
|
115 |
+
|
116 |
+
# reference image 5
|
117 |
+
python run_align_pose.py --ref_name data/images/10.jpg --source_video_paths data/videos/source_video.mp4 --saved_pose_dir data/saved_pose/10
|
118 |
+
```
|
119 |
+
The processed target pose for demo videos will be in ```data/saved_pose```. `--ref_name` denotes the path of reference image, `--source_video_paths` provides the source poses, `--saved_pose_dir` means the path of processed target poses.
|
120 |
+
|
121 |
+
|
122 |
+
### (4) Run UniAnimate-Wan2.1-14B-I2V to generate 480P videos
|
123 |
+
|
124 |
+
```
|
125 |
+
CUDA_VISIBLE_DEVICES="0" python examples/unianimate_wan/inference_unianimate_wan_480p.py
|
126 |
+
```
|
127 |
+
About 23G GPU memory is needed. After this, 81-frame video clips with 832x480 (hight x width) resolution will be generated under the `./outputs` folder:
|
128 |
+
|
129 |
+
For long video generation, run the following comment:
|
130 |
+
|
131 |
+
```
|
132 |
+
CUDA_VISIBLE_DEVICES="0" python examples/unianimate_wan/inference_unianimate_wan_long_video_480p.py
|
133 |
+
```
|
134 |
+
|
135 |
+
### (5) Run UniAnimate-Wan2.1-14B-I2V to generate 720P videos
|
136 |
+
|
137 |
+
```
|
138 |
+
CUDA_VISIBLE_DEVICES="0" python examples/unianimate_wan/inference_unianimate_wan_720p.py
|
139 |
+
```
|
140 |
+
About 36G GPU memory is needed. After this, 81-frame video clips with 1280x720 resolution will be generated:
|
141 |
+
|
142 |
+
|
143 |
+
Note: Even though our model was trained on 832x480 resolution, we observed that direct inference on 1280x720 is usually allowed and produces satisfactory results.
|
144 |
+
|
145 |
+
|
146 |
+
For long video generation, run the following comment:
|
147 |
+
|
148 |
+
```
|
149 |
+
CUDA_VISIBLE_DEVICES="0" python examples/unianimate_wan/inference_unianimate_wan_long_video_720p.py
|
150 |
+
```
|
151 |
+
|
152 |
+
## Train
|
153 |
+
|
154 |
+
We support UniAnimate-DiT training on our own dataset.
|
155 |
+
|
156 |
+
### Step 1: Install additional packages
|
157 |
+
|
158 |
+
```
|
159 |
+
pip install peft lightning pandas
|
160 |
+
# deepspeed for multiple GPUs
|
161 |
+
pip install -U deepspeed
|
162 |
+
```
|
163 |
+
|
164 |
+
### Step 2: Prepare your dataset
|
165 |
+
|
166 |
+
In order to speed up the training, we preprocessed the videos, extracted video frames and corresponding Dwpose in advance, and packaged them with pickle package. You need to manage the training data as follows:
|
167 |
+
|
168 |
+
```
|
169 |
+
data/example_dataset/
|
170 |
+
βββ TikTok
|
171 |
+
βββ 00001_mp4
|
172 |
+
βββ dw_pose_with_foot_wo_face.pkl # packaged Dwpose
|
173 |
+
βββ frame_data.pkl # packaged frames
|
174 |
+
```
|
175 |
+
|
176 |
+
We encourage adding large amounts of data to finetune models to get better results. The experimental results show that about 1000 training videos can finetune a good human image animation model.
|
177 |
+
|
178 |
+
### Step 3: Train
|
179 |
+
|
180 |
+
For convenience, we do not pre-process VAE features, but put VAE pre-processing and DiT model training in a training script, and also facilitate data augmentation to improve performance. You can also choose to extract VAE features first and then conduct subsequent DiT model training.
|
181 |
+
|
182 |
+
|
183 |
+
LoRA training (One A100 GPU):
|
184 |
+
|
185 |
+
```shell
|
186 |
+
CUDA_VISIBLE_DEVICES="0" python examples/unianimate_wan/train_unianimate_wan.py \
|
187 |
+
--task train \
|
188 |
+
--train_architecture lora \
|
189 |
+
--lora_rank 64 --lora_alpha 64 \
|
190 |
+
--dataset_path data/example_dataset \
|
191 |
+
--output_path ./models_out_one_GPU \
|
192 |
+
--dit_path "/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00001-of-00007.safetensors,/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00002-of-00007.safetensors,/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00003-of-00007.safetensors,/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00004-of-00007.safetensors,/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00005-of-00007.safetensors,/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00006-of-00007.safetensors,/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00007-of-00007.safetensors" \
|
193 |
+
--max_epochs 10 --learning_rate 1e-4 \
|
194 |
+
--accumulate_grad_batches 1 \
|
195 |
+
--use_gradient_checkpointing --image_encoder_path "/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth" --use_gradient_checkpointing_offload
|
196 |
+
```
|
197 |
+
|
198 |
+
|
199 |
+
LoRA training (Multi-GPUs, based on `Deepseed`):
|
200 |
+
|
201 |
+
```shell
|
202 |
+
CUDA_VISIBLE_DEVICES="0,1,2,3" python examples/unianimate_wan/train_unianimate_wan.py \
|
203 |
+
--task train --train_architecture lora \
|
204 |
+
--lora_rank 128 --lora_alpha 128 \
|
205 |
+
--dataset_path data/example_dataset \
|
206 |
+
--output_path ./models_out --dit_path "/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00001-of-00007.safetensors,/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00002-of-00007.safetensors,/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00003-of-00007.safetensors,/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00004-of-00007.safetensors,/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00005-of-00007.safetensors,/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00006-of-00007.safetensors,/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00007-of-00007.safetensors" \
|
207 |
+
--max_epochs 10 --learning_rate 1e-4 \
|
208 |
+
--accumulate_grad_batches 1 \
|
209 |
+
--use_gradient_checkpointing \
|
210 |
+
--image_encoder_path "/mnt/user/VideoGeneration_Baselines/Wan2.1/Wan2.1-I2V-14B-720P/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth" \
|
211 |
+
--use_gradient_checkpointing_offload \
|
212 |
+
--training_strategy "deepspeed_stage_2"
|
213 |
+
```
|
214 |
+
|
215 |
+
|
216 |
+
You can also finetune our trained model by set `--pretrained_lora_path="./checkpoints/UniAnimate-Wan2.1-14B-Lora.ckpt"`.
|
217 |
+
|
218 |
+
### Step 4: Test
|
219 |
+
|
220 |
+
Test the LoRA finetuned model trained on one GPU:
|
221 |
+
|
222 |
+
```python
|
223 |
+
import torch
|
224 |
+
from diffsynth import ModelManager, WanVideoPipeline, save_video, VideoData, WanUniAnimateVideoPipeline
|
225 |
+
|
226 |
+
|
227 |
+
# Load models
|
228 |
+
model_manager = ModelManager(device="cpu")
|
229 |
+
model_manager.load_models(
|
230 |
+
["Wan2.1/Wan2.1-I2V-14B-720P/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"],
|
231 |
+
torch_dtype=torch.float32, # Image Encoder is loaded with float32
|
232 |
+
)
|
233 |
+
model_manager.load_models(
|
234 |
+
[
|
235 |
+
[
|
236 |
+
|
237 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00001-of-00007.safetensors",
|
238 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00002-of-00007.safetensors",
|
239 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00003-of-00007.safetensors",
|
240 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00004-of-00007.safetensors",
|
241 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00005-of-00007.safetensors",
|
242 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00006-of-00007.safetensors",
|
243 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00007-of-00007.safetensors",
|
244 |
+
|
245 |
+
],
|
246 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/models_t5_umt5-xxl-enc-bf16.pth",
|
247 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/Wan2.1_VAE.pth",
|
248 |
+
],
|
249 |
+
torch_dtype=torch.bfloat16,
|
250 |
+
)
|
251 |
+
|
252 |
+
model_manager.load_lora_v2("models/lightning_logs/version_1/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
|
253 |
+
|
254 |
+
...
|
255 |
+
...
|
256 |
+
```
|
257 |
+
|
258 |
+
Test the LoRA finetuned model trained on multi-GPUs based on Deepspeed, first you need `python zero_to_fp32.py . output_dir/ --safe_serialization` to change the .pt files to .safetensors files, and then run:
|
259 |
+
|
260 |
+
```python
|
261 |
+
import torch
|
262 |
+
from diffsynth import ModelManager, WanVideoPipeline, save_video, VideoData, WanUniAnimateVideoPipeline
|
263 |
+
|
264 |
+
|
265 |
+
# Load models
|
266 |
+
model_manager = ModelManager(device="cpu")
|
267 |
+
model_manager.load_models(
|
268 |
+
["Wan2.1/Wan2.1-I2V-14B-720P/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"],
|
269 |
+
torch_dtype=torch.float32, # Image Encoder is loaded with float32
|
270 |
+
)
|
271 |
+
model_manager.load_models(
|
272 |
+
[
|
273 |
+
[
|
274 |
+
|
275 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00001-of-00007.safetensors",
|
276 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00002-of-00007.safetensors",
|
277 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00003-of-00007.safetensors",
|
278 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00004-of-00007.safetensors",
|
279 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00005-of-00007.safetensors",
|
280 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00006-of-00007.safetensors",
|
281 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/diffusion_pytorch_model-00007-of-00007.safetensors",
|
282 |
+
|
283 |
+
],
|
284 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/models_t5_umt5-xxl-enc-bf16.pth",
|
285 |
+
"Wan2.1/Wan2.1-I2V-14B-720P/Wan2.1_VAE.pth",
|
286 |
+
],
|
287 |
+
torch_dtype=torch.bfloat16,
|
288 |
+
)
|
289 |
+
|
290 |
+
model_manager.load_lora_v2([
|
291 |
+
"./models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt/output_dir/model-00001-of-00011.safetensors",
|
292 |
+
"./models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt/output_dir/model-00002-of-00011.safetensors",
|
293 |
+
"./models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt/output_dir/model-00003-of-00011.safetensors",
|
294 |
+
"./models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt/output_dir/model-00004-of-00011.safetensors",
|
295 |
+
"./models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt/output_dir/model-00005-of-00011.safetensors",
|
296 |
+
"./models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt/output_dir/model-00006-of-00011.safetensors",
|
297 |
+
"./models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt/output_dir/model-00007-of-00011.safetensors",
|
298 |
+
"./models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt/output_dir/model-00008-of-00011.safetensors",
|
299 |
+
"./models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt/output_dir/model-00009-of-00011.safetensors",
|
300 |
+
"./models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt/output_dir/model-00010-of-00011.safetensors",
|
301 |
+
"./models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt/output_dir/model-00011-of-00011.safetensors",
|
302 |
+
], lora_alpha=1.0)
|
303 |
+
|
304 |
+
...
|
305 |
+
...
|
306 |
+
```
|
307 |
+
|
308 |
+
|
309 |
+
## Citation
|
310 |
+
|
311 |
+
If you find this codebase useful for your research, please cite the following paper:
|
312 |
+
|
313 |
+
```
|
314 |
+
@article{wang2025unianimate,
|
315 |
+
title={UniAnimate: Taming Unified Video Diffusion Models for Consistent Human Image Animation},
|
316 |
+
author={Wang, Xiang and Zhang, Shiwei and Gao, Changxin and Wang, Jiayu and Zhou, Xiaoqiang and Zhang, Yingya and Yan, Luxin and Sang, Nong},
|
317 |
+
journal={Science China Information Sciences},
|
318 |
+
year={2025}
|
319 |
+
}
|
320 |
+
```
|
321 |
+
|
322 |
+
|
323 |
+
## Disclaimer
|
324 |
+
|
325 |
+
This project is intended for academic research, and we explicitly disclaim any responsibility for user-generated content. Users are solely liable for their actions while using the generative model. The project contributors have no legal affiliation with, nor accountability for, users' behaviors. It is imperative to use the generative model responsibly, adhering to both ethical and legal standards.
|
dw-ll_ucoco_384.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:724f4ff2439ed61afb86fb8a1951ec39c6220682803b4a8bd4f598cd913b1843
|
3 |
+
size 134399116
|
yolox_l.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7860ae79de6c89a3c1eb72ae9a2756c0ccfbe04b7791bb5880afabd97855a411
|
3 |
+
size 216746733
|