--- license: mit datasets: - ZeynepAltundal/w language: - tr base_model: - ytu-ce-cosmos/turkish-gpt2-medium-350m-instruct-v0.1 pipeline_tag: text-generation library_name: transformers tags: - Turkish - Fine-tuned - Question-Answering - GPT-2 --- # Model Overview: This model is a fine-tuned version of the "ytu-ce-cosmos/turkish-gpt2-medium-350m-instruct-v0.1", designed specifically for Turkish Question-Answering (Q&A). The fine-tuning process utilized a custom dataset generated from Turkish Wikipedia articles, focusing on factual knowledge. **Base Model:** ytu-ce-cosmos/turkish-gpt2-medium-350m-instruct-v0.1 **Fine-Tuned Dataset:** Custom Turkish Q&A dataset **Evaluation Loss:** 2.1461 (on the validation dataset) ## Quick Start ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "./fine_tuned_model" # Replace with your Hugging Face model path if uploaded tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) question = "Kamu sosyolojisi nedir?" input_ids = tokenizer(question, return_tensors="pt").input_ids output = model.generate( input_ids=input_ids, max_length=50, num_return_sequences=1, temperature=0.7 ) response = tokenizer.decode(output[0], skip_special_tokens=True) print(f"Question: {question}") print(f"Answer: {response}") ``` ## Training Details: **Dataset Source:** Custom dataset generated from Turkish Wikipedia **Number of Training Examples:** 2,606 **Training Dataset Size:** 2,084 (80%) **Validation Dataset Size:** 522 (20%) **Number of Epochs:** 3 **Batch Size:** 8 **Learning Rate:** 5e-5 **Evaluation Loss:** 2.1461