File size: 4,687 Bytes
e28de08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0896f01
 
713c3a9
0896f01
 
 
 
 
 
2cbe40a
0896f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cbe40a
0896f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e28de08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
base_model: prithivMLmods/PocketThinker-QwQ-3B-Instruct
datasets:
- amphora/QwQ-LongCoT-130K
- amphora/QwQ-LongCoT-130K-2
- amphora/verfiable-25k
- amphora/m-math500
language:
- en
- zh
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- Math
- Code
- Thinker
- Reasoning
- 3B
- QwQ
- Mini
- text-generation-inference
- SFT
- llama-cpp
- gguf-my-repo
---

# Triangle104/PocketThinker-QwQ-3B-Instruct-Q4_K_S-GGUF
This model was converted to GGUF format from [`prithivMLmods/PocketThinker-QwQ-3B-Instruct`](https://huggingface.co/prithivMLmods/PocketThinker-QwQ-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/prithivMLmods/PocketThinker-QwQ-3B-Instruct) for more details on the model.

---
PocketThinker-QwQ-3B-Instruct
-

PocketThinker-QwQ-3B-Instruct is based on the Qwen2.5-3B-Instruct architecture, designed as a lightweight and efficient reasoning 
assistant. It serves as the pocket-sized version of QwQ-LCoT-7B-Instruct, optimized for fast inference while maintaining 
strong problem-solving and computational capabilities. This model is fine-tuned for enhanced structured reasoning, minimal token wastage, and high-quality technical responses.

Key Improvements
-

Optimized for Coding: Specializes in generating structured, efficient code with minimal redundancy for smooth execution.  

Compact yet Powerful: Maintains strong problem-solving capabilities within a smaller 3B parameter architecture, ensuring accessibility on resource-limited devices.  

Advanced Reasoning Capabilities: Excels in algorithmic problem-solving, mathematical reasoning, and structured technical explanations.  

Efficient Memory Utilization: Reduces computational overhead while maintaining high-quality outputs.  

Focused Output Generation: Avoids unnecessary token generation, ensuring concise and relevant responses.


Intended Use
-
Code Generation & Optimization:
Supports developers in writing, refining, and optimizing code across multiple programming languages.  

Algorithm & Mathematical Problem Solving:
Delivers precise solutions and structured explanations for complex problems.  

Technical Documentation & Explanation:
Assists in generating well-structured documentation for libraries, APIs, and coding concepts.  

Debugging Assistance:
Helps identify and correct errors in code snippets.  

Educational Support:
Simplifies programming topics for students and learners with clear explanations.  

Structured Data Processing:
Generates structured outputs like JSON, XML, and tables for data science applications.

Limitations
-

Hardware Constraints:
Although lighter than larger models, still requires a moderately powerful GPU or TPU for optimal performance.  

Potential Bias in Responses:
Outputs may reflect biases present in training data.  

Limited Creativity:
May generate variable results in non-technical, creative tasks.  

No Real-Time Awareness:
Lacks access to real-world events beyond its training cutoff.  

Error Propagation in Long Responses:
Minor mistakes in early outputs may affect overall coherence in lengthy responses.  

Prompt Sensitivity:
The effectiveness of responses depends on well-structured prompts.

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/PocketThinker-QwQ-3B-Instruct-Q4_K_S-GGUF --hf-file pocketthinker-qwq-3b-instruct-q4_k_s.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/PocketThinker-QwQ-3B-Instruct-Q4_K_S-GGUF --hf-file pocketthinker-qwq-3b-instruct-q4_k_s.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/PocketThinker-QwQ-3B-Instruct-Q4_K_S-GGUF --hf-file pocketthinker-qwq-3b-instruct-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/PocketThinker-QwQ-3B-Instruct-Q4_K_S-GGUF --hf-file pocketthinker-qwq-3b-instruct-q4_k_s.gguf -c 2048
```