from typing import Union, Mapping, Optional, Tuple, TypedDict, Dict, List
from functools import partial

import torch
import numpy as np
from transformers import AutoModel, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding
from transformers.models.auto import AutoTokenizer
from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
from transformers import LlamaModel
from transformers.cache_utils import Cache, DynamicCache
from transformers.utils import (
    add_start_docstrings_to_model_forward,
    logging,
)
from tqdm.auto import tqdm
from datasets import Dataset
from torch.utils.data import DataLoader
from .configuration_conan import ConanEmbedConfig

logger = logging.get_logger(__name__)


class ConanEmbedFeatures(TypedDict):
    input_dict: torch.Tensor
    attention_mask: torch.Tensor
    pool_mask: torch.Tensor


def _move_to_device(maybe_tensor, device: torch.device):
    if torch.is_tensor(maybe_tensor):
        return maybe_tensor.to(device, non_blocking=device.type == "cuda")
    elif isinstance(maybe_tensor, dict):
        return {key: _move_to_device(value, device) for key, value in maybe_tensor.items()}
    elif isinstance(maybe_tensor, list):
        return [_move_to_device(x, device) for x in maybe_tensor]
    elif isinstance(maybe_tensor, tuple):
        return tuple([_move_to_device(x, device) for x in maybe_tensor])
    elif isinstance(maybe_tensor, Mapping):
        return type(maybe_tensor)({k: _move_to_device(v, device) for k, v in maybe_tensor.items()})
    else:
        return maybe_tensor


def move_to_device(sample, device: torch.device):
    if device.type == "cpu":
        return sample

    if len(sample) == 0:
        return {}
    return _move_to_device(sample, device)


def input_transform_func(
    tokenizer: PreTrainedTokenizerFast,
    examples: Dict[str, List],
    always_add_eos: bool,
    max_length: int,
    instruction: str,
) -> BatchEncoding:
    if always_add_eos:
        examples["input_texts"] = [
            instruction + input_example + tokenizer.eos_token for input_example in examples["input_texts"]
        ]
    print(examples["input_texts"])
    batch_dict = tokenizer(
        examples["input_texts"],
        max_length=max_length,
        padding=True,
        return_token_type_ids=False,
        return_tensors="pt",
        truncation=True,
    )
    print(examples["input_texts"])
    return batch_dict


class ConanEmbedModel(LlamaModel):
    config_class = ConanEmbedConfig

    def __init__(self, config: ConanEmbedConfig) -> None:
        """
        Initialize the model with a given configuration.

        Args:
            config (ConanEmbedConfig): The configuration for the model.
        """
        super().__init__(config)
        for layer in self.layers:
            layer.self_attn.is_causal = not config.do_dir
        self._attn_implementation = "eager"
        self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path)
        self.padding_side = config.padding_side
        self.is_mask_instruction = config.is_mask_instruction
        self.add_eos = config.add_eos
        self.mask_type = config.mask_type
        self.sentence_pooling_method = config.sentence_pooling_method
        if config.add_pad_token and self.tokenizer is not None:
            self.add_pad_token()

    def add_pad_token(self):
        self.tokenizer.pad_token = self.tokenizer.eos_token
        self.tokenizer.padding_side = self.padding_side

    def _sentence_embedding(self, last_hidden_state, attention_mask=None):
        """Use the pooling method to get the sentence embedding.

        Args:
            last_hidden_state (torch.Tensor): The model output's last hidden state.
            attention_mask (torch.Tensor): Mask out padding tokens during pooling.

        Raises:
            NotImplementedError: Specified pooling method not implemented.

        Returns:
            torch.Tensor: The sentence embeddings.
        """
        if self.sentence_pooling_method == "cls":
            return last_hidden_state[:, 0]
        elif self.sentence_pooling_method == "mean":
            s = torch.sum(last_hidden_state, dim=1)
            # d = attention_mask.sum(dim=1, keepdim=True).float()
            return s
        elif self.sentence_pooling_method == "last_token":
            left_padding = attention_mask[:, -1].sum() == attention_mask.shape[0]
            if left_padding:
                return last_hidden_state[:, -1]
            else:
                sequence_lengths = attention_mask.sum(dim=1) - 1
                batch_size = last_hidden_state.shape[0]
                return last_hidden_state[
                    torch.arange(batch_size, device=last_hidden_state.device),
                    sequence_lengths,
                ]
        else:
            raise NotImplementedError(f"pooling method {self.sentence_pooling_method} not implemented")

    def prepare_kwargs_from_batch(
        self,
        batch_dict: Dict[str, torch.Tensor],
        instruction_lens: int,
        device: torch.device,
    ) -> ConanEmbedFeatures:
        """
        Prepare the batch dictionary for encoding.

        Args:
            batch_dict: A dictionary containing the input_ids and attention_mask.
            instruction_lens: The length of the instruction.
            device: The device to move the data to.

        Returns:
            A ConanEmbedFeatures object with the prepared input_ids and attention_mask.
        """
        batch_dict = move_to_device(batch_dict, device)
        attention_mask = batch_dict["attention_mask"].clone() if "attention_mask" in batch_dict else None
        if (
            attention_mask is not None
            and self.padding_side == "right"
            and self.is_mask_instruction
            and instruction_lens > 0
        ):
            # Mask out the instruction tokens for mean-pooling
            attention_mask[:, :instruction_lens] = 0
        features: ConanEmbedFeatures = {
            "input_ids": torch.tensor(batch_dict.get("input_ids").to(batch_dict.get("input_ids")).long()),
            "attention_mask": batch_dict["attention_mask"],
        }
        return features

    @torch.no_grad()
    def _do_encode(
        self,
        prompts: List[str],
        batch_size: int = 1,
        instruction: str = "",
        max_length: int = 4096,
        num_workers: int = 32,
        return_numpy: bool = False,
    ) -> Union[torch.FloatTensor, np.ndarray]:
        """
        Encode a list of prompts using the model.

        Args:
            prompts: A list of prompts to encode.
            batch_size: The batch size to use for encoding. Defaults to 1.
            instruction: An instruction to prepend to the prompts. Defaults to "".
            max_length: The maximum length of the input_ids. Defaults to 4096.
            num_workers: The number of workers to use for encoding. Defaults to 32.
            return_numpy: Whether to return the output as a numpy array or a torch tensor. Defaults to False.

        Returns:
            A tensor or numpy array of shape (len(prompts), hidden_size) containing the encoded prompts.
        """
        dataset: Dataset = Dataset.from_dict({"input_texts": prompts})
        dataset.set_transform(
            partial(
                input_transform_func,
                self.tokenizer,
                always_add_eos=True,
                max_length=max_length,
                instruction=instruction,
            )
        )

        data_collator = DataCollatorWithPadding(self.tokenizer)
        data_loader = DataLoader(
            dataset,
            batch_size=batch_size,
            shuffle=False,
            drop_last=False,
            num_workers=num_workers,
            collate_fn=data_collator,
            pin_memory=True,
        )

        if self.padding_side == "right" and self.is_mask_instruction and len(instruction) > 0:
            instruction_lens = len(self.tokenizer.tokenize(instruction))
        else:
            instruction_lens = 0

        encoded_embeds: List[torch.Tensor] = []
        device = next(self.parameters()).device
        for batch_dict in tqdm(data_loader, desc="encoding", mininterval=10):
            features = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
            embeds = self(**features)["sentence_embeddings"].squeeze(1)
            encoded_embeds.append(embeds)
        encoded_embeds = torch.cat(encoded_embeds, axis=0)
        if return_numpy:
            encoded_embeds = encoded_embeds.cpu().detach().numpy()
        return encoded_embeds

    @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
        """
        Args:
            input_ids: a tensor of shape (batch_size, sequence_length)
            attention_mask: a tensor of shape (batch_size, sequence_length)
            position_ids: a tensor of shape (batch_size, sequence_length)
            past_key_values: a list of tensors of shape (batch_size, key_length, hidden_size)
            inputs_embeds: a tensor of shape (batch_size, sequence_length, hidden_size)
            use_cache: a boolean indicating whether to use the cache
            output_attentions: a boolean indicating whether to output the attention weights
            output_hidden_states: a boolean indicating whether to output the hidden states
            return_dict: a boolean indicating whether to return a dictionary

        Returns:
            a tuple of length 4 containing the last hidden state, the cache, the hidden states,
                and the attention weights
            or a BaseModelOutputWithPast object
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        past_key_values_length = 0

        if use_cache:
            use_legacy_cache = not isinstance(past_key_values, Cache)
            if use_legacy_cache:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            past_key_values_length = past_key_values.get_usable_length(seq_length)

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
            is_padding_right = attention_mask[:, -1].sum().item() != batch_size
            if is_padding_right:
                raise ValueError(
                    "You are attempting to perform batched generation with padding_side='right'"
                    " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
                    " call `tokenizer.padding_side  = 'left'` before tokenizing the input. "
                )

        if self._attn_implementation == "flash_attention_2":
            # 2d mask is passed through the layers
            attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
        elif self._attn_implementation == "sdpa" and not output_attentions:
            # output_attentions=True can not be supported when using SDPA, and we fall back on
            # the manual implementation that requires a 4D causal mask in all cases.
            attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
        else:
            # 4d mask is passed through the layers
            attention_mask = _prepare_4d_attention_mask(
                attention_mask,
                inputs_embeds.dtype,
            )

        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
            next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

    @torch.no_grad()
    def encode(
        self,
        prompts: List[str],
        instruction: str = "",
        max_length: int = 4096,
    ) -> Dict[str, torch.Tensor]:
        """
        Encode a list of prompts and an instruction using the model.

        Args:
            prompts: A list of prompts to encode.
            instruction: An instruction to prepend to the prompts. Defaults to "".
            max_length: The maximum length of the input_ids. Defaults to 4096.

        Returns:
            A dictionary containing the sentence embeddings with key "sentence_embeddings".
        """
        if self.padding_side == "right" and self.is_mask_instruction and len(instruction) > 0:
            instruction_lens = len(self.tokenizer.tokenize(instruction))
        else:
            instruction_lens = 0

        device = next(self.parameters()).device
        batch_dict = input_transform_func(
            self.tokenizer,
            {"input_texts": [prompt for prompt in prompts]},
            always_add_eos=False,
            max_length=max_length,
            instruction=instruction,
        )

        features: ConanEmbedFeatures = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
        outputs = self(**features)

        embeds = self._sentence_embedding(outputs.last_hidden_state)
        return {"sentence_embeddings": embeds}


# AutoModel Register
AutoModel.register(ConanEmbedConfig, ConanEmbedModel)

# Register for auto class
ConanEmbedModel.register_for_auto_class("AutoModel")