Add pipeline tag, library name and set inference to true
Browse filesThis PR improves the model card by:
- Adding the `pipeline_tag`, enabling people to find your model at https://huggingface.co/models?pipeline_tag=text-to-video
- Adding the `library_name` which allows easier usage of the model
- Setting inference to `true`
README.md
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: other
|
3 |
license_link: https://huggingface.co/THUDM/CogVideoX-5b-I2V/blob/main/LICENSE
|
4 |
-
language:
|
5 |
-
- en
|
6 |
tags:
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
11 |
---
|
12 |
|
13 |
# CogVideoX1.5-5B-I2V
|
@@ -118,8 +120,6 @@ conversion to get a better experience.**
|
|
118 |
|
119 |
1. Install the required dependencies
|
120 |
|
121 |
-
|
122 |
-
|
123 |
```shell
|
124 |
# diffusers (from source)
|
125 |
# transformers>=4.46.2
|
@@ -164,7 +164,7 @@ export_to_video(video, "output.mp4", fps=8)
|
|
164 |
|
165 |
[PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be
|
166 |
used to quantize the text encoder, transformer, and VAE modules to reduce CogVideoX's memory requirements. This allows
|
167 |
-
the model to run on free T4 Colab or GPUs with
|
168 |
with `torch.compile`, which can significantly accelerate inference.
|
169 |
|
170 |
```python
|
@@ -248,5 +248,4 @@ This model is released under the [CogVideoX LICENSE](LICENSE).
|
|
248 |
journal={arXiv preprint arXiv:2408.06072},
|
249 |
year={2024}
|
250 |
}
|
251 |
-
```
|
252 |
-
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
license: other
|
5 |
license_link: https://huggingface.co/THUDM/CogVideoX-5b-I2V/blob/main/LICENSE
|
|
|
|
|
6 |
tags:
|
7 |
+
- video-generation
|
8 |
+
- thudm
|
9 |
+
- image-to-video
|
10 |
+
pipeline_tag: text-to-video
|
11 |
+
library_name: diffusers
|
12 |
+
inference: true
|
13 |
---
|
14 |
|
15 |
# CogVideoX1.5-5B-I2V
|
|
|
120 |
|
121 |
1. Install the required dependencies
|
122 |
|
|
|
|
|
123 |
```shell
|
124 |
# diffusers (from source)
|
125 |
# transformers>=4.46.2
|
|
|
164 |
|
165 |
[PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be
|
166 |
used to quantize the text encoder, transformer, and VAE modules to reduce CogVideoX's memory requirements. This allows
|
167 |
+
the model to run on free T4 Colab or GPUs with smaller VRAM! Also, note that TorchAO quantization is fully compatible
|
168 |
with `torch.compile`, which can significantly accelerate inference.
|
169 |
|
170 |
```python
|
|
|
248 |
journal={arXiv preprint arXiv:2408.06072},
|
249 |
year={2024}
|
250 |
}
|
251 |
+
```
|
|