Steveeeeeeen HF Staff commited on
Commit
dddafa7
·
verified ·
1 Parent(s): 6d3d267

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +69 -0
  3. __init__.py +0 -0
  4. __pycache__/configuration_bigcodec.cpython-39.pyc +0 -0
  5. __pycache__/modeling_bigcodec.cpython-39.pyc +0 -0
  6. __pycache__/modeling_xcodec2.cpython-39.pyc +0 -0
  7. ckpt/epoch=4-step=1400000.ckpt +3 -0
  8. config.json +11 -0
  9. configuration_bigcodec.py +19 -0
  10. model.safetensors +3 -0
  11. modeling_xcodec2.py +165 -0
  12. module.py +0 -0
  13. pytorch_model.bin +3 -0
  14. reconstructed.wav +3 -0
  15. test.flac +0 -0
  16. test.py +21 -0
  17. vq/__init__.py +4 -0
  18. vq/__pycache__/__init__.cpython-310.pyc +0 -0
  19. vq/__pycache__/__init__.cpython-311.pyc +0 -0
  20. vq/__pycache__/__init__.cpython-312.pyc +0 -0
  21. vq/__pycache__/__init__.cpython-38.pyc +0 -0
  22. vq/__pycache__/__init__.cpython-39.pyc +0 -0
  23. vq/__pycache__/activations.cpython-310.pyc +0 -0
  24. vq/__pycache__/activations.cpython-311.pyc +0 -0
  25. vq/__pycache__/activations.cpython-312.pyc +0 -0
  26. vq/__pycache__/activations.cpython-38.pyc +0 -0
  27. vq/__pycache__/activations.cpython-39.pyc +0 -0
  28. vq/__pycache__/blocks.cpython-310.pyc +0 -0
  29. vq/__pycache__/blocks.cpython-39.pyc +0 -0
  30. vq/__pycache__/bs_roformer5.cpython-310.pyc +0 -0
  31. vq/__pycache__/bs_roformer5.cpython-38.pyc +0 -0
  32. vq/__pycache__/bs_roformer5.cpython-39.pyc +0 -0
  33. vq/__pycache__/codec_decoder.cpython-310.pyc +0 -0
  34. vq/__pycache__/codec_decoder.cpython-311.pyc +0 -0
  35. vq/__pycache__/codec_decoder.cpython-312.pyc +0 -0
  36. vq/__pycache__/codec_decoder.cpython-39.pyc +0 -0
  37. vq/__pycache__/codec_decoder_vocos.cpython-310.pyc +0 -0
  38. vq/__pycache__/codec_decoder_vocos.cpython-311.pyc +0 -0
  39. vq/__pycache__/codec_decoder_vocos.cpython-312.pyc +0 -0
  40. vq/__pycache__/codec_decoder_vocos.cpython-39.pyc +0 -0
  41. vq/__pycache__/codec_encoder.cpython-310.pyc +0 -0
  42. vq/__pycache__/codec_encoder.cpython-311.pyc +0 -0
  43. vq/__pycache__/codec_encoder.cpython-312.pyc +0 -0
  44. vq/__pycache__/codec_encoder.cpython-38.pyc +0 -0
  45. vq/__pycache__/codec_encoder.cpython-39.pyc +0 -0
  46. vq/__pycache__/factorized_vector_quantize.cpython-310.pyc +0 -0
  47. vq/__pycache__/factorized_vector_quantize.cpython-311.pyc +0 -0
  48. vq/__pycache__/factorized_vector_quantize.cpython-312.pyc +0 -0
  49. vq/__pycache__/factorized_vector_quantize.cpython-39.pyc +0 -0
  50. vq/__pycache__/module.cpython-310.pyc +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ reconstructed.wav filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - audio-to-audio
5
+ pipeline_tag: audio-to-audio
6
+ ---
7
+
8
+ [![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2502.04128)
9
+ **Update (2025-02-13):** Add [Llasa finetune instruction](https://github.com/zhenye234/LLaSA_training/tree/main/finetune).
10
+
11
+ **Update (2025-02-07):** Our paper has been released!
12
+
13
+
14
+ ## Paper
15
+
16
+ LLaSA: Scaling Train Time and Inference Time Compute for LLaMA based Speech Synthesis
17
+
18
+ Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model (AAAI 2025, xcodec 1.0)
19
+
20
+
21
+ # Getting Started with XCodec2 on Hugging Face
22
+ XCodec2 is a speech tokenizer that offers the following key features:
23
+
24
+ 1. **Single Vector Quantization**
25
+ 2. **50 Tokens per Second**
26
+ 3. **Multilingual Speech Semantic Support and High-Quality Speech Reconstruction**
27
+
28
+
29
+ To use `xcodec2`, ensure you have it installed. You can install it using the following command:
30
+
31
+ ```bash
32
+ conda create -n xcodec2 python=3.9
33
+ conda activate xcodec2
34
+ pip install xcodec2 (Use `xcodec2==0.1.5` for codec inference and llasa fine-tuning. I’ve removed unnecessary dependencies, and it works fine in my testing. However, I’m not sure if other problems may arise. If you prefer more stability, I recommend using `xcodec2==0.1.3` which accurately aligns during my codec training.)
35
+
36
+ ```
37
+ Then,
38
+ ```python
39
+ import torch
40
+ import soundfile as sf
41
+ from transformers import AutoConfig
42
+
43
+
44
+ from xcodec2.modeling_xcodec2 import XCodec2Model
45
+
46
+ model_path = "HKUSTAudio/xcodec2"
47
+
48
+ model = XCodec2Model.from_pretrained(model_path)
49
+ model.eval().cuda()
50
+
51
+
52
+ wav, sr = sf.read("test.wav")
53
+ wav_tensor = torch.from_numpy(wav).float().unsqueeze(0) # Shape: (1, T)
54
+
55
+
56
+ with torch.no_grad():
57
+ # Only 16khz speech
58
+ # Only supports single input. For batch inference, please refer to the link below.
59
+ vq_code = model.encode_code(input_waveform=wav_tensor)
60
+ print("Code:", vq_code )
61
+
62
+ recon_wav = model.decode_code(vq_code).cpu() # Shape: (1, 1, T')
63
+
64
+
65
+ sf.write("reconstructed.wav", recon_wav[0, 0, :].numpy(), sr)
66
+ print("Done! Check reconstructed.wav")
67
+ ```
68
+
69
+ # If you want to train your own xcodec2, batch inference, or large-scale code extraction, the code is released [here](https://github.com/zhenye234/X-Codec-2.0).
__init__.py ADDED
File without changes
__pycache__/configuration_bigcodec.cpython-39.pyc ADDED
Binary file (743 Bytes). View file
 
__pycache__/modeling_bigcodec.cpython-39.pyc ADDED
Binary file (2.6 kB). View file
 
__pycache__/modeling_xcodec2.cpython-39.pyc ADDED
Binary file (4.07 kB). View file
 
ckpt/epoch=4-step=1400000.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02d8c58b95ac84de701a94e351b6981523bd106cbd05863a09cc56dd148c689e
3
+ size 8306367217
config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "xcodec2",
3
+ "semantic_hidden_size": 1024,
4
+ "codec_encoder_hidden_size": 1024,
5
+ "codec_decoder_hidden_size": 1024,
6
+ "use_vocos": true,
7
+ "architectures": [
8
+ "XCodec2Model"
9
+ ]
10
+ }
11
+
configuration_bigcodec.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class BigCodecConfig(PretrainedConfig):
4
+ model_type = "bigcodec"
5
+
6
+ def __init__(
7
+ self,
8
+ # 下面这些只是示例超参
9
+ semantic_hidden_size=1024,
10
+ codec_encoder_hidden_size=1024,
11
+ codec_decoder_hidden_size=1024,
12
+ use_vocos=True,
13
+ **kwargs
14
+ ):
15
+ super().__init__(**kwargs)
16
+ self.semantic_hidden_size = semantic_hidden_size
17
+ self.codec_encoder_hidden_size = codec_encoder_hidden_size
18
+ self.codec_decoder_hidden_size = codec_decoder_hidden_size
19
+ self.use_vocos = use_vocos
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a27b1544a394b9aff722da55366281f00480a5479fe5cbfc84f2e2e74eab4db0
3
+ size 3291104560
modeling_xcodec2.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from transformers import PreTrainedModel
4
+ from configuration_bigcodec import BigCodecConfig
5
+
6
+ # 请确保这些模块路径是正确的
7
+ from vq.codec_encoder import CodecEncoder_Transformer
8
+ from vq.codec_decoder_vocos import CodecDecoderVocos
9
+ from vq.module import SemanticEncoder
10
+ from transformers import AutoFeatureExtractor, Wav2Vec2BertModel
11
+
12
+ class XCodec2Model(PreTrainedModel):
13
+ config_class = BigCodecConfig
14
+
15
+ def __init__(self, config: BigCodecConfig):
16
+ super().__init__(config)
17
+
18
+ # 1) 语义模型
19
+ self.semantic_model = Wav2Vec2BertModel.from_pretrained(
20
+ "facebook/w2v-bert-2.0",
21
+ output_hidden_states=True
22
+ )
23
+ self.semantic_model.eval()
24
+
25
+ self.SemanticEncoder_module = SemanticEncoder(
26
+ config.semantic_hidden_size,
27
+ config.semantic_hidden_size,
28
+ config.semantic_hidden_size
29
+ )
30
+
31
+ # 2) Codec Encoder
32
+ self.CodecEnc = CodecEncoder_Transformer()
33
+
34
+ # 3) Codec Decoder
35
+ self.generator = CodecDecoderVocos()
36
+
37
+ # 4) 两个全连接层
38
+ self.fc_prior = nn.Linear(2048, 2048)
39
+ self.fc_post_a = nn.Linear(2048, 1024)
40
+ feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
41
+ self.feature_extractor = feature_extractor
42
+
43
+ def forward(self, input_waveform, sample_rate=16000):
44
+ """
45
+ 这里的 forward 不一定要叫 forward,也可以拆成别的方法;
46
+ 但是如果想兼容 pipeline,需要在 forward 里给出核心逻辑。
47
+
48
+ 参数:
49
+ input_waveform: [batch_size, waveform_length]
50
+ sample_rate: 默认 16000
51
+ 返回:
52
+ 重构后的语音音频 (Tensor)
53
+ """
54
+ # 1) 特征提取
55
+ # 如果需要 padding,可以在这里做
56
+ input_features = self.feature_extractor(
57
+ input_waveform,
58
+ sampling_rate=sample_rate,
59
+ return_tensors="pt"
60
+ ).input_features.to(self.device) # [batch, frames, feat_dim]
61
+
62
+ # 2) 语义层
63
+ semantic_output = self.semantic_model(input_features)
64
+ semantic_hidden_16 = semantic_output.hidden_states[16] # 取第16层
65
+ semantic_hidden_16 = semantic_hidden_16.transpose(1, 2) # [batch, hidden_dim, frames]
66
+ semantic_encoded = self.SemanticEncoder_module(semantic_hidden_16)
67
+
68
+ # 3) codec encoder
69
+ wav = input_waveform.unsqueeze(1).to(self.device) # shape: [batch, 1, time]
70
+ vq_emb = self.CodecEnc(wav) # [batch, time//down, 1024] 只是示例
71
+ vq_emb = vq_emb.transpose(1, 2) # -> [batch, 1024, frames]
72
+
73
+ # 对齐语义向量的时间帧数,这里只做示例处理
74
+ # 真实做法里可能要先对齐维度
75
+ if vq_emb.shape[-1] != semantic_encoded.shape[-1]:
76
+ # 简单强行截断或补零都行,需要你自己决定
77
+ min_len = min(vq_emb.shape[-1], semantic_encoded.shape[-1])
78
+ vq_emb = vq_emb[:, :, :min_len]
79
+ semantic_encoded = semantic_encoded[:, :, :min_len]
80
+
81
+ # 4) 拼接
82
+ concat_emb = torch.cat([semantic_encoded, vq_emb], dim=1) # [batch, 1024 + 1024, frames]
83
+
84
+ # 5) fc_prior
85
+ concat_emb = self.fc_prior(concat_emb.transpose(1, 2)).transpose(1, 2)
86
+
87
+ # 6) decoder 的量化部分
88
+ _, vq_code, _ = self.generator(concat_emb, vq=True)
89
+ vq_post_emb = self.generator.quantizer.get_output_from_indices(vq_code.transpose(1, 2))
90
+ vq_post_emb = vq_post_emb.transpose(1, 2)
91
+
92
+ # 7) fc_post_a
93
+ vq_post_emb = self.fc_post_a(vq_post_emb.transpose(1, 2)).transpose(1, 2)
94
+
95
+ # 8) 最后解码成波形
96
+ recon_audio = self.generator(vq_post_emb.transpose(1, 2), vq=False)[0]
97
+ # recon_audio: [batch, time]
98
+ return recon_audio
99
+
100
+ def encode_code(self, input_waveform, sample_rate=16000):
101
+ """
102
+ 将输入的音频编码为代码表示。
103
+
104
+ 参数:
105
+ input_waveform: [batch_size, waveform_length]
106
+ sample_rate: 默认 16000
107
+ 返回:
108
+ 编码后的代码 (Tensor)
109
+ """
110
+ with torch.no_grad():
111
+ # 1) 特征提取
112
+ input_features = self.feature_extractor(
113
+ input_waveform,
114
+ sampling_rate=sample_rate,
115
+ return_tensors="pt"
116
+ ).input_features.to(self.device) # [batch, frames, feat_dim]
117
+
118
+ # 2) 语义层
119
+ semantic_output = self.semantic_model(input_features)
120
+ semantic_hidden_16 = semantic_output.hidden_states[16] # 取第16层
121
+ semantic_hidden_16 = semantic_hidden_16.transpose(1, 2) # [batch, hidden_dim, frames]
122
+ semantic_encoded = self.SemanticEncoder_module(semantic_hidden_16)
123
+
124
+ # 3) codec encoder
125
+ wav = input_waveform.unsqueeze(1).to(self.device) # shape: [batch, 1, time]
126
+ vq_emb = self.CodecEnc(wav) # [batch, time//down, 1024] 只是示例
127
+ vq_emb = vq_emb.transpose(1, 2) # -> [batch, 1024, frames]
128
+
129
+ # 对齐语义向量的时间帧数,这里只做示例处理
130
+ if vq_emb.shape[-1] != semantic_encoded.shape[-1]:
131
+ min_len = min(vq_emb.shape[-1], semantic_encoded.shape[-1])
132
+ vq_emb = vq_emb[:, :, :min_len]
133
+ semantic_encoded = semantic_encoded[:, :, :min_len]
134
+
135
+ # 4) 拼接
136
+ concat_emb = torch.cat([semantic_encoded, vq_emb], dim=1) # [batch, 2048, frames]
137
+
138
+ # 5) fc_prior
139
+ concat_emb = self.fc_prior(concat_emb.transpose(1, 2)).transpose(1, 2)
140
+
141
+ # 6) decoder 的量化部分,获取code
142
+ _, vq_code, _ = self.generator(concat_emb, vq=True)
143
+ # vq_code: [batch, frames]
144
+ return vq_code
145
+
146
+ def decode_code(self, vq_code):
147
+ """
148
+ 将编码后的代码解码回音频。
149
+
150
+ 参数:
151
+ vq_code: 编码后的代码 (Tensor) [batch, frames]
152
+ 返回:
153
+ 解码后的音频 (Tensor) [batch, waveform_length]
154
+ """
155
+ with torch.no_grad():
156
+ # 获取量化后的嵌入
157
+ vq_post_emb = self.generator.quantizer.get_output_from_indices(vq_code.transpose(1, 2))
158
+ vq_post_emb = vq_post_emb.transpose(1, 2) # [batch, 1024, frames]
159
+
160
+ # 7) fc_post_a
161
+ vq_post_emb = self.fc_post_a(vq_post_emb.transpose(1, 2)).transpose(1, 2) # [batch, 1024, frames]
162
+
163
+ # 8) 最后解码成波形
164
+ recon_audio = self.generator(vq_post_emb.transpose(1, 2), vq=False)[0] # [batch, time]
165
+ return recon_audio
module.py ADDED
File without changes
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cb939062f3930e56ff22082f49c95461aedc8ceade7ff7b16a1b10f1e92e0be
3
+ size 3291343655
reconstructed.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f978a23bbcb49459d6813fca2efb0e5581a019e9cdd5d89b370d74d92df2a249
3
+ size 156844
test.flac ADDED
Binary file (97.2 kB). View file
 
test.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import soundfile as sf
3
+ from transformers import AutoConfig
4
+
5
+ from modeling_xcodec2 import XCodec2Model
6
+
7
+ model_path = "/data/zheny/xcodec2" # 这是你在 huggingface 上的仓库名
8
+
9
+ model = XCodec2Model.from_pretrained(model_path)
10
+ model.eval().cuda()
11
+
12
+ # 准备一段音频
13
+ wav, sr = sf.read("test.flac")
14
+ wav_tensor = torch.from_numpy(wav).float().unsqueeze(0) # [1, time]
15
+
16
+ with torch.no_grad():
17
+ vq_code = model.encode_code(input_waveform=wav_tensor )
18
+ print(vq_code)
19
+ recon_wav = model.decode_code(vq_code).cpu()
20
+
21
+ sf.write("reconstructed.wav", recon_wav[0,0,:].numpy(), sr)
vq/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from vq.codec_encoder import CodecEncoder
2
+ from vq.codec_decoder import CodecDecoder
3
+ from vq.codec_decoder_vocos import CodecDecoderVocos
4
+ from vq.codec_encoder import CodecEncoder_Transformer,CodecEncoder_only_Transformer
vq/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (389 Bytes). View file
 
vq/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (371 Bytes). View file
 
vq/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (318 Bytes). View file
 
vq/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (414 Bytes). View file
 
vq/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (383 Bytes). View file
 
vq/__pycache__/activations.cpython-310.pyc ADDED
Binary file (4 kB). View file
 
vq/__pycache__/activations.cpython-311.pyc ADDED
Binary file (6.07 kB). View file
 
vq/__pycache__/activations.cpython-312.pyc ADDED
Binary file (5.65 kB). View file
 
vq/__pycache__/activations.cpython-38.pyc ADDED
Binary file (4.07 kB). View file
 
vq/__pycache__/activations.cpython-39.pyc ADDED
Binary file (4.04 kB). View file
 
vq/__pycache__/blocks.cpython-310.pyc ADDED
Binary file (6.03 kB). View file
 
vq/__pycache__/blocks.cpython-39.pyc ADDED
Binary file (6.29 kB). View file
 
vq/__pycache__/bs_roformer5.cpython-310.pyc ADDED
Binary file (3.91 kB). View file
 
vq/__pycache__/bs_roformer5.cpython-38.pyc ADDED
Binary file (3.91 kB). View file
 
vq/__pycache__/bs_roformer5.cpython-39.pyc ADDED
Binary file (3.86 kB). View file
 
vq/__pycache__/codec_decoder.cpython-310.pyc ADDED
Binary file (9.09 kB). View file
 
vq/__pycache__/codec_decoder.cpython-311.pyc ADDED
Binary file (8.78 kB). View file
 
vq/__pycache__/codec_decoder.cpython-312.pyc ADDED
Binary file (7.76 kB). View file
 
vq/__pycache__/codec_decoder.cpython-39.pyc ADDED
Binary file (9.22 kB). View file
 
vq/__pycache__/codec_decoder_vocos.cpython-310.pyc ADDED
Binary file (18.1 kB). View file
 
vq/__pycache__/codec_decoder_vocos.cpython-311.pyc ADDED
Binary file (27.7 kB). View file
 
vq/__pycache__/codec_decoder_vocos.cpython-312.pyc ADDED
Binary file (25.2 kB). View file
 
vq/__pycache__/codec_decoder_vocos.cpython-39.pyc ADDED
Binary file (18.4 kB). View file
 
vq/__pycache__/codec_encoder.cpython-310.pyc ADDED
Binary file (9.97 kB). View file
 
vq/__pycache__/codec_encoder.cpython-311.pyc ADDED
Binary file (4.91 kB). View file
 
vq/__pycache__/codec_encoder.cpython-312.pyc ADDED
Binary file (4.39 kB). View file
 
vq/__pycache__/codec_encoder.cpython-38.pyc ADDED
Binary file (7.45 kB). View file
 
vq/__pycache__/codec_encoder.cpython-39.pyc ADDED
Binary file (10.2 kB). View file
 
vq/__pycache__/factorized_vector_quantize.cpython-310.pyc ADDED
Binary file (3.71 kB). View file
 
vq/__pycache__/factorized_vector_quantize.cpython-311.pyc ADDED
Binary file (6.3 kB). View file
 
vq/__pycache__/factorized_vector_quantize.cpython-312.pyc ADDED
Binary file (5.82 kB). View file
 
vq/__pycache__/factorized_vector_quantize.cpython-39.pyc ADDED
Binary file (3.64 kB). View file
 
vq/__pycache__/module.cpython-310.pyc ADDED
Binary file (12 kB). View file