--- license: apache-2.0 tags: - StepLaw - causal-lm language: - en library_name: transformers pipeline_tag: text-generation model-index: - name: step2v2_0618_h1280_ffnh9048_numh10_numl13_lr9.766e-04_bs32_ti61035_mlr1e-5 results: [] --- # Wandb Model Name: step2v2_0618_h1280_ffnh9048_numh10_numl13_lr9.766e-04_bs32_ti61035_mlr1e-5 This model is part of the [StepLaw-N_536M-D_3.0B](https://huggingface.co/collections/StepLaw/StepLaw-N_536M-D_3.0B) collection. ## Model Specifications ### Architecture - **Hidden size (H)**: 1280 - **Feed-forward network size (FFN)**: 9048 - **Attention heads**: 10 - **Layers**: 13 - **Parameter count**: 536M ### Training Parameters - **Learning rate (lr)**: 9.766e-04 - **Batch size (bs)**: 65536 - **Training iterations**: 61035 - **Training tokens (D)**: 4.0B ## Model Description StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 9.766e-04 and batch size 65536 for 61035 iterations, using a total of 4.0B training tokens. ## Usage Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "StepLaw/StepLaw-N_536M-D_3.0B-LR9.766e-04-BS65536" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) # Generate text inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt") outputs = model.generate(**inputs, max_length=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```