--- license: apache-2.0 tags: - StepLaw - causal-lm language: - en library_name: transformers pipeline_tag: text-generation model-index: - name: step2v2_0618_h1280_ffnh9472_numh10_numl10_lr1.11E-02_bs352_ti55486_mlr1.00E-05 results: [] --- # Wandb Model Name: step2v2_0618_h1280_ffnh9472_numh10_numl10_lr1.11E-02_bs352_ti55486_mlr1.00E-05 This model is part of the [StepLaw-N_429M-D_39.0B](https://huggingface.co/collections/StepLaw/StepLaw-N_429M-D_39.0B) collection. ## Model Specifications ### Architecture - **Hidden size (H)**: 1280 - **Feed-forward network size (FFN)**: 9472 - **Attention heads**: 10 - **Layers**: 10 - **Parameter count**: 429M ### Training Parameters - **Learning rate (lr)**: 1.11E-02 - **Batch size (bs)**: 720896 - **Training iterations**: 55486 - **Training tokens (D)**: 40.0B ## Model Description StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 1.11E-02 and batch size 720896 for 55486 iterations, using a total of 40.0B training tokens. ## Usage Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "StepLaw/StepLaw-N_429M-D_39.0B-LR1.11E-02-BS720896" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) # Generate text inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt") outputs = model.generate(**inputs, max_length=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```