File size: 1,672 Bytes
3be406d 00fdec8 3be406d 00fdec8 3be406d 00fdec8 3be406d 00fdec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
license: apache-2.0
tags:
- StepLaw
- causal-lm
language:
- en
library_name: transformers
pipeline_tag: text-generation
model-index:
- name: step2v2_0618_h1024_ffnh9552_numh16_numl8_lr2.762e-03_bs1024_ti38146_mlr1.00e-05
results: []
---
# Wandb Model Name: step2v2_0618_h1024_ffnh9552_numh16_numl8_lr2.762e-03_bs1024_ti38146_mlr1.00e-05
This model is part of the [StepLaw-N_268M-D_79.0B](https://huggingface.co/collections/StepLaw/StepLaw-N_268M-D_79.0B) collection.
## Model Specifications
### Architecture
- **Hidden size (H)**: 1024
- **Feed-forward network size (FFN)**: 9552
- **Attention heads**: 16
- **Layers**: 8
- **Parameter count**: 268M
### Training Parameters
- **Learning rate (lr)**: 2.762e-03
- **Batch size (bs)**: 2097152
- **Training iterations**: 38146
- **Training tokens (D)**: 80.0B
## Model Description
StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 2.762e-03 and batch size 2097152 for 38146 iterations, using a total of 80.0B training tokens.
## Usage Example
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "StepLaw/StepLaw-N_268M-D_79.0B-LR2.762e-03-BS2097152"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
# Generate text
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
|