--- license: apache-2.0 tags: - StepLaw - causal-lm language: - en library_name: transformers pipeline_tag: text-generation model-index: - name: step2v2_0618_h960_ffnh9368_numh15_numl7_lr6.905e-04_bs128_ti30517_mlr1e-5 results: [] --- # Wandb Model Name: step2v2_0618_h960_ffnh9368_numh15_numl7_lr6.905e-04_bs128_ti30517_mlr1e-5 This model is part of the [StepLaw-N_214M-D_7.0B](https://huggingface.co/collections/StepLaw/StepLaw-N_214M-D_7.0B) collection. ## Model Specifications ### Architecture - **Hidden size (H)**: 960 - **Feed-forward network size (FFN)**: 9368 - **Attention heads**: 15 - **Layers**: 7 - **Parameter count**: 214M ### Training Parameters - **Learning rate (lr)**: 6.905e-04 - **Batch size (bs)**: 262144 - **Training iterations**: 30517 - **Training tokens (D)**: 8.0B ## Model Description StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 6.905e-04 and batch size 262144 for 30517 iterations, using a total of 8.0B training tokens. ## Usage Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "StepLaw/StepLaw-N_214M-D_7.0B-LR6.905e-04-BS262144" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) # Generate text inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt") outputs = model.generate(**inputs, max_length=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```