Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- StepLaw
|
5 |
+
- causal-lm
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
library_name: transformers
|
9 |
+
pipeline_tag: text-generation
|
10 |
+
model-index:
|
11 |
+
- name: step2v2_0618_h960_ffnh9368_numh15_numl7_lr1.381e-03_bs32_ti122070_mlr1e-5
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
# Wandb Model Name: step2v2_0618_h960_ffnh9368_numh15_numl7_lr1.381e-03_bs32_ti122070_mlr1e-5
|
16 |
+
|
17 |
+
This model is part of the [StepLaw-N_214M-D_7.0B](https://huggingface.co/collections/StepLaw/StepLaw-N_214M-D_7.0B) collection.
|
18 |
+
|
19 |
+
## Model Specifications
|
20 |
+
|
21 |
+
### Architecture
|
22 |
+
- **Hidden size (H)**: 960
|
23 |
+
- **Feed-forward network size (FFN)**: 9368
|
24 |
+
- **Attention heads**: 15
|
25 |
+
- **Layers**: 7
|
26 |
+
- **Parameter count**: 214M
|
27 |
+
|
28 |
+
### Training Parameters
|
29 |
+
- **Learning rate (lr)**: 1.381e-03
|
30 |
+
- **Batch size (bs)**: 65536
|
31 |
+
- **Training iterations**: 122070
|
32 |
+
- **Training tokens (D)**: 8.0B
|
33 |
+
|
34 |
+
## Model Description
|
35 |
+
|
36 |
+
StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 1.381e-03 and batch size 65536 for 122070 iterations, using a total of 8.0B training tokens.
|
37 |
+
|
38 |
+
## Usage Example
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
42 |
+
|
43 |
+
model_name = "StepLaw/StepLaw-N_214M-D_7.0B-LR1.381e-03-BS65536"
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
46 |
+
|
47 |
+
# Generate text
|
48 |
+
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
|
49 |
+
outputs = model.generate(**inputs, max_length=100)
|
50 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
51 |
+
```
|