brain-zhang commited on
Commit
2be5b32
·
verified ·
1 Parent(s): 46810e7

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - StepLaw
5
+ - causal-lm
6
+ language:
7
+ - en
8
+ library_name: transformers
9
+ pipeline_tag: text-generation
10
+ model-index:
11
+ - name: step2v2_0618_h960_ffnh9368_numh15_numl7_lr1.381e-03_bs32_ti122070_mlr1e-5
12
+ results: []
13
+ ---
14
+
15
+ # Wandb Model Name: step2v2_0618_h960_ffnh9368_numh15_numl7_lr1.381e-03_bs32_ti122070_mlr1e-5
16
+
17
+ This model is part of the [StepLaw-N_214M-D_7.0B](https://huggingface.co/collections/StepLaw/StepLaw-N_214M-D_7.0B) collection.
18
+
19
+ ## Model Specifications
20
+
21
+ ### Architecture
22
+ - **Hidden size (H)**: 960
23
+ - **Feed-forward network size (FFN)**: 9368
24
+ - **Attention heads**: 15
25
+ - **Layers**: 7
26
+ - **Parameter count**: 214M
27
+
28
+ ### Training Parameters
29
+ - **Learning rate (lr)**: 1.381e-03
30
+ - **Batch size (bs)**: 65536
31
+ - **Training iterations**: 122070
32
+ - **Training tokens (D)**: 8.0B
33
+
34
+ ## Model Description
35
+
36
+ StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 1.381e-03 and batch size 65536 for 122070 iterations, using a total of 8.0B training tokens.
37
+
38
+ ## Usage Example
39
+
40
+ ```python
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer
42
+
43
+ model_name = "StepLaw/StepLaw-N_214M-D_7.0B-LR1.381e-03-BS65536"
44
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
45
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
46
+
47
+ # Generate text
48
+ inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
49
+ outputs = model.generate(**inputs, max_length=100)
50
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
51
+ ```