--- license: apache-2.0 base_model: openai/gpt-oss-20b tags: - merge-conflicts - git-automation - developer-tools - code-generation - version-control - devops languages: - en pipeline_tag: text-generation library_name: transformers datasets: - SoarAILabs/merge-conflict-dataset metrics: - name: exact_match type: exact_match value: 22.0 - name: token_f1 type: f1 value: 0.617 - name: bleu type: bleu value: 50.82 - name: rouge-l type: rouge value: 58.64 - name: levenshtein_sim type: similarity value: 0.549 - name: char_similarity type: similarity value: 0.765 model-index: - name: KiteResolve-20B results: - task: type: text-generation name: Merge Conflict Resolution metrics: - name: Exact Match type: exact_match value: 22.0 - name: Token F1 type: f1 value: 0.617 - name: BLEU type: bleu value: 50.82 - name: ROUGE-L type: rouge value: 58.64 - name: Levenshtein Similarity type: similarity value: 0.549 - name: Character Similarity type: similarity value: 0.765 --- # 🪁 KiteResolve-20B: AI-Powered Merge Conflict Resolution *Developed by [Soar AI Labs](https://huggingface.co/SoarAILabs)*
License Parameters Task BLEU Score
## 🚀 Model Description **KiteResolve-20B** is a fine-tuned version of GPT-OSS-20B specifically engineered for **automated Git merge conflict resolution**. This model transforms the tedious process of manually resolving merge conflicts into an intelligent, automated workflow that understands code semantics across multiple programming languages. ### ✨ Key Features - 🎯 **20% Exact Match Accuracy** on real-world merge conflicts - 📈 **12% Token-F1 Score Improvement** over base model - 🌐 **Multi-Language Support**: Java, JavaScript, Python, C#, TypeScript, and more - ⚡ **Fast Inference**: Optimized for CLI and webhook integrations - 🔧 **Production Ready**: Designed for enterprise Git workflows ## 📊 Performance Metrics | Model | Exact Match | Token F1 | BLEU | ROUGE-L | Char Sim | | ------------------- | ----------- | --------- | --------- | --------- | --------- | | **codellama:13b** | 0.00 | 0.193 | 13.28 | 0.208 | 0.710 | | **llama3.1:8b** | 0.04 | 0.583 | 50.59 | 0.610 | 0.818 | | **gpt-oss:20b** | **0.24** | 0.549 | 47.19 | 0.572 | 0.736 | | **KiteResolve-20B** | 0.22 | **0.617** | **50.82** | **0.586** | **0.765** | *Evaluated on 50 held-out samples from real-world merge conflicts.* ## 🛠️ Usage ### Quick Start ```python from transformers import AutoModelForCausalLM, AutoTokenizer from unsloth.chat_templates import get_chat_template # Load the model model = AutoModelForCausalLM.from_pretrained("SoarAILabs/KiteResolve-20B") tokenizer = AutoTokenizer.from_pretrained("SoarAILabs/KiteResolve-20B") tokenizer = get_chat_template(tokenizer, chat_template="gpt-oss") # Resolve a merge conflict conflict = """ <<<<<<< ours function calculateTotal(items) { return items.reduce((sum, item) => sum + item.price, 0); } ======= function calculateTotal(items) { return items.map(item => item.price).reduce((a, b) => a + b, 0); } >>>>>>> theirs """ messages = [{"role": "user", "content": f"Resolve this merge conflict:\n```{conflict}```"}] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer([prompt], return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=200, do_sample=False) resolution = tokenizer.decode(outputs[0], skip_special_tokens=True) print(resolution) ``` ### Ollama 🦙️ ```bash ollama run hf.co/SoarAILabs/KiteResolve-20B/model-q4_k_m.gguf ```