Sirus1's picture
Upload 3 files
d2e6da0
raw
history blame contribute delete
6.67 kB
import re
import numpy as np
import tensorflow_hub as hub
import openai
import os
import tensorflow_text
from sklearn.neighbors import NearestNeighbors
import gradio as gr
import requests
import json
import fitz
#这里填写调用openai需要的密钥
openai.api_key = '9481961416fa4c8e883047c5679cf971'
openai.api_base = 'https://demopro-oai-we2.openai.azure.com/'
openai.api_type = 'azure'
openai.api_version = '2022-12-01'
#将嵌套的列表展平
def flatten(_2d_list):
flat_list = []
for element in _2d_list:
if type(element) is list:
for item in element:
flat_list.append(item)
else:
flat_list.append(element)
return flat_list
def preprocess(text):
text = text.replace('\n', ' ')
text = re.sub('\s+', ' ', text)
return text
#将pdf文档按段落分
# def pdf_to_text(path):
# doc = pdfplumber.open(path)
# pages = doc.pages
# text_list=[]
# for page,d in enumerate(pages):
# d=d.extract_text()
# d=preprocess(d)
# text_list.append(d)
# doc.close()
# return text_list
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
for i in range(start_page - 1, end_page):
text = doc.load_page(i).get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
def text_to_chunks(texts, word_length=150, start_page=1):
text_toks = [t.split(' ') for t in texts]
page_nums = []
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i : i + word_length]
if (
(i + word_length) > len(words)
and (len(chunk) < word_length)
and (len(text_toks) != (idx + 1))
):
text_toks[idx + 1] = chunk + text_toks[idx + 1]
continue
chunk = ' '.join(chunk).strip()
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
chunks.append(chunk)
return chunks
history=pdf_to_text('The Elements of Statisitcal Learning.pdf',start_page=20)
history=text_to_chunks(history,start_page=1)
def encoder(text):
embed=openai.Embedding.create(input=text, engine="text-embedding-ada-002")
return embed.get('data')[0].get('embedding')
#定义语义搜索类
class SemanticSearch:
def __init__(self):
#类初始化,使用google公司的多语言语句编码,第一次运行时需要十几分钟的时间下载
self.use =hub.load('https://tfhub.dev/google/universal-sentence-encoder-multilingual/3')
self.fitted = False
def get_text_embedding(self, texts, batch=1000):
embeddings = []
for i in range(0, len(texts), batch):
text_batch = texts[i : (i + batch)]
emb_batch = self.use(text_batch)
embeddings.append(emb_batch)
embeddings = np.vstack(embeddings)
return embeddings
#K近邻算法,找到与问题最相似的 k 个段落,这里的 k 即n_neighbors=10
def fit(self, data, batch=1000, n_neighbors=5):
self.data = data
self.embeddings = self.get_text_embedding(data, batch=batch)
n_neighbors = min(n_neighbors, len(self.embeddings))
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
self.nn.fit(self.embeddings)
self.fitted = True
#定义了该方法后,实例就可以被当作函数调用,text参数即用户提出的问题,inp_emb为其转化成的向量
def __call__(self, text, return_data=True):
inp_emb = self.use([text])
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
if return_data:
return [self.data[i] for i in neighbors]
else:
return neighbors
#openai的api接口,engine参数为我们选择的大语言模型,prompt即提示词
def generate_text(prompt, engine="text-davinci-003"):
completions = openai.Completion.create(
engine=engine,
prompt=prompt,
max_tokens=512,
n=1,
stop=None,
temperature=0.7,
)
message = completions.choices[0].text
return message
def generate_answer(question):
#匹配与问题最相近的n个段落,前面定义了n=10
topn_chunks = recommender(question)
prompt = ""
prompt += 'search results:\n\n'
#把匹配到的段落加进提示词
for c in topn_chunks:
prompt += c + '\n\n'
#提示词
prompt += '''
Instructions: 如果搜索结果中找不到相关信息,只需要回答'未在该文档中找到相关信息'。
如果找到了相关信息,请使用中文回答,回答尽量精确简洁。并在句子的末尾使用[七年级上册/七年级下册页码]符号引用每个参考文献(每个结果的开头都有这个编号)
如果不确定答案是否正确,就仅给出相似段落的来源,不要回复错误的答案。
\n\nQuery: {question}\nAnswer:
'''
prompt += f"Query: {question}\nAnswer:"
answer = generate_text(prompt,"text-davinci-003")
return answer
recommender = SemanticSearch()
recommender.fit(history)
#以下为web客户端搭建,运行后产生客户端界面
def ask_api(question):
if question.strip() == '':
return '[ERROR]: 未输入问题'
return generate_answer(question)
title = 'Chat With Statistical Learning'
description = """ 该机器人将以Trevor Hastie等人所著的The Elements of Statistical Learning Data Mining, Inference, and Prediction
(即我们上课所用的课本)为主题回答你的问题,如果所问问题与书的内容无关,将会返回"未在该文档中找到相关信息"
"""
with gr.Blocks() as demo:
gr.Markdown(f'<center><h1>{title}</h1></center>')
gr.Markdown(description)
with gr.Row():
with gr.Group():
question = gr.Textbox(label='请输入你的问题')
btn = gr.Button(value='提交')
btn.style(full_width=True)
with gr.Group():
answer = gr.Textbox(label='回答:')
btn.click(
ask_api,
inputs=[question],
outputs=[answer]
)
#参数share=True会产生一个公开网页,别人可以通过访问该网页使用你的模型,前提是你需要正在运行这段代码(将自己的电脑当作服务器)
demo.launch()