Shiina-Mahiru commited on
Commit
b1eed81
·
verified ·
1 Parent(s): d9427ee

Upload ffmpeg\dag.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. ffmpeg//dag.py +231 -0
ffmpeg//dag.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import unicode_literals
2
+
3
+ from ._utils import get_hash, get_hash_int
4
+ from builtins import object
5
+ from collections import namedtuple
6
+
7
+
8
+ class DagNode(object):
9
+ """Node in a directed-acyclic graph (DAG).
10
+
11
+ Edges:
12
+ DagNodes are connected by edges. An edge connects two nodes with a label for each side:
13
+ - ``upstream_node``: upstream/parent node
14
+ - ``upstream_label``: label on the outgoing side of the upstream node
15
+ - ``downstream_node``: downstream/child node
16
+ - ``downstream_label``: label on the incoming side of the downstream node
17
+
18
+ For example, DagNode A may be connected to DagNode B with an edge labelled "foo" on A's side, and "bar" on B's
19
+ side:
20
+
21
+ _____ _____
22
+ | | | |
23
+ | A >[foo]---[bar]> B |
24
+ |_____| |_____|
25
+
26
+ Edge labels may be integers or strings, and nodes cannot have more than one incoming edge with the same label.
27
+
28
+ DagNodes may have any number of incoming edges and any number of outgoing edges. DagNodes keep track only of
29
+ their incoming edges, but the entire graph structure can be inferred by looking at the furthest downstream
30
+ nodes and working backwards.
31
+
32
+ Hashing:
33
+ DagNodes must be hashable, and two nodes are considered to be equivalent if they have the same hash value.
34
+
35
+ Nodes are immutable, and the hash should remain constant as a result. If a node with new contents is required,
36
+ create a new node and throw the old one away.
37
+
38
+ String representation:
39
+ In order for graph visualization tools to show useful information, nodes must be representable as strings. The
40
+ ``repr`` operator should provide a more or less "full" representation of the node, and the ``short_repr``
41
+ property should be a shortened, concise representation.
42
+
43
+ Again, because nodes are immutable, the string representations should remain constant.
44
+ """
45
+
46
+ def __hash__(self):
47
+ """Return an integer hash of the node."""
48
+ raise NotImplementedError()
49
+
50
+ def __eq__(self, other):
51
+ """Compare two nodes; implementations should return True if (and only if) hashes match."""
52
+ raise NotImplementedError()
53
+
54
+ def __repr__(self, other):
55
+ """Return a full string representation of the node."""
56
+ raise NotImplementedError()
57
+
58
+ @property
59
+ def short_repr(self):
60
+ """Return a partial/concise representation of the node."""
61
+ raise NotImplementedError()
62
+
63
+ @property
64
+ def incoming_edge_map(self):
65
+ """Provides information about all incoming edges that connect to this node.
66
+
67
+ The edge map is a dictionary that maps an ``incoming_label`` to ``(outgoing_node, outgoing_label)``. Note that
68
+ implicity, ``incoming_node`` is ``self``. See "Edges" section above.
69
+ """
70
+ raise NotImplementedError()
71
+
72
+
73
+ DagEdge = namedtuple(
74
+ 'DagEdge',
75
+ [
76
+ 'downstream_node',
77
+ 'downstream_label',
78
+ 'upstream_node',
79
+ 'upstream_label',
80
+ 'upstream_selector',
81
+ ],
82
+ )
83
+
84
+
85
+ def get_incoming_edges(downstream_node, incoming_edge_map):
86
+ edges = []
87
+ for downstream_label, upstream_info in list(incoming_edge_map.items()):
88
+ upstream_node, upstream_label, upstream_selector = upstream_info
89
+ edges += [
90
+ DagEdge(
91
+ downstream_node,
92
+ downstream_label,
93
+ upstream_node,
94
+ upstream_label,
95
+ upstream_selector,
96
+ )
97
+ ]
98
+ return edges
99
+
100
+
101
+ def get_outgoing_edges(upstream_node, outgoing_edge_map):
102
+ edges = []
103
+ for upstream_label, downstream_infos in sorted(outgoing_edge_map.items()):
104
+ for downstream_info in downstream_infos:
105
+ downstream_node, downstream_label, downstream_selector = downstream_info
106
+ edges += [
107
+ DagEdge(
108
+ downstream_node,
109
+ downstream_label,
110
+ upstream_node,
111
+ upstream_label,
112
+ downstream_selector,
113
+ )
114
+ ]
115
+ return edges
116
+
117
+
118
+ class KwargReprNode(DagNode):
119
+ """A DagNode that can be represented as a set of args+kwargs.
120
+ """
121
+
122
+ @property
123
+ def __upstream_hashes(self):
124
+ hashes = []
125
+ for downstream_label, upstream_info in list(self.incoming_edge_map.items()):
126
+ upstream_node, upstream_label, upstream_selector = upstream_info
127
+ hashes += [
128
+ hash(x)
129
+ for x in [
130
+ downstream_label,
131
+ upstream_node,
132
+ upstream_label,
133
+ upstream_selector,
134
+ ]
135
+ ]
136
+ return hashes
137
+
138
+ @property
139
+ def __inner_hash(self):
140
+ props = {'args': self.args, 'kwargs': self.kwargs}
141
+ return get_hash(props)
142
+
143
+ def __get_hash(self):
144
+ hashes = self.__upstream_hashes + [self.__inner_hash]
145
+ return get_hash_int(hashes)
146
+
147
+ def __init__(self, incoming_edge_map, name, args, kwargs):
148
+ self.__incoming_edge_map = incoming_edge_map
149
+ self.name = name
150
+ self.args = args
151
+ self.kwargs = kwargs
152
+ self.__hash = self.__get_hash()
153
+
154
+ def __hash__(self):
155
+ return self.__hash
156
+
157
+ def __eq__(self, other):
158
+ return hash(self) == hash(other)
159
+
160
+ @property
161
+ def short_hash(self):
162
+ return '{:x}'.format(abs(hash(self)))[:12]
163
+
164
+ def long_repr(self, include_hash=True):
165
+ formatted_props = ['{!r}'.format(arg) for arg in self.args]
166
+ formatted_props += [
167
+ '{}={!r}'.format(key, self.kwargs[key]) for key in sorted(self.kwargs)
168
+ ]
169
+ out = '{}({})'.format(self.name, ', '.join(formatted_props))
170
+ if include_hash:
171
+ out += ' <{}>'.format(self.short_hash)
172
+ return out
173
+
174
+ def __repr__(self):
175
+ return self.long_repr()
176
+
177
+ @property
178
+ def incoming_edges(self):
179
+ return get_incoming_edges(self, self.incoming_edge_map)
180
+
181
+ @property
182
+ def incoming_edge_map(self):
183
+ return self.__incoming_edge_map
184
+
185
+ @property
186
+ def short_repr(self):
187
+ return self.name
188
+
189
+
190
+ def topo_sort(downstream_nodes):
191
+ marked_nodes = []
192
+ sorted_nodes = []
193
+ outgoing_edge_maps = {}
194
+
195
+ def visit(
196
+ upstream_node,
197
+ upstream_label,
198
+ downstream_node,
199
+ downstream_label,
200
+ downstream_selector=None,
201
+ ):
202
+ if upstream_node in marked_nodes:
203
+ raise RuntimeError('Graph is not a DAG')
204
+
205
+ if downstream_node is not None:
206
+ outgoing_edge_map = outgoing_edge_maps.get(upstream_node, {})
207
+ outgoing_edge_infos = outgoing_edge_map.get(upstream_label, [])
208
+ outgoing_edge_infos += [
209
+ (downstream_node, downstream_label, downstream_selector)
210
+ ]
211
+ outgoing_edge_map[upstream_label] = outgoing_edge_infos
212
+ outgoing_edge_maps[upstream_node] = outgoing_edge_map
213
+
214
+ if upstream_node not in sorted_nodes:
215
+ marked_nodes.append(upstream_node)
216
+ for edge in upstream_node.incoming_edges:
217
+ visit(
218
+ edge.upstream_node,
219
+ edge.upstream_label,
220
+ edge.downstream_node,
221
+ edge.downstream_label,
222
+ edge.upstream_selector,
223
+ )
224
+ marked_nodes.remove(upstream_node)
225
+ sorted_nodes.append(upstream_node)
226
+
227
+ unmarked_nodes = [(node, None) for node in downstream_nodes]
228
+ while unmarked_nodes:
229
+ upstream_node, upstream_label = unmarked_nodes.pop()
230
+ visit(upstream_node, upstream_label, None, None)
231
+ return sorted_nodes, outgoing_edge_maps