Firefly-Neko / firefly-neko-stt.py
Shiina-Mahiru's picture
Upload firefly-neko-stt.py with huggingface_hub
4d6be10 verified
raw
history blame
5.87 kB
import os
import time
import re
import wave
import pyaudio
import subprocess
import numpy as np
from funasr import AutoModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
bat_file_path = 'GPT-SoVITS-v2-240821\\go-cli.bat'
model_name = "model/Qwen2.5-7B-Instruct"
print("初始化中...")
with open('background.txt', 'r', encoding='utf-8') as file:
background = file.read()
with open('STT-background.txt', 'r', encoding='utf-8') as file:
stt_background = file.read()
def extract_language(text):
text = re.sub(r'([^)]*)', '', text)
text = re.sub(r'【[^】]*】', '', text)
return text
def play_wav(file_path):
with wave.open(file_path, 'rb') as wf:
p = pyaudio.PyAudio()
stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),
channels=wf.getnchannels(),
rate=wf.getframerate(),
output=True)
data = wf.readframes(1024)
while data:
stream.write(data)
data = wf.readframes(1024)
stream.stop_stream()
stream.close()
p.terminate()
# 使用 4 位量化配置
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype="float16",
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
subprocess.run([bat_file_path], shell=True)
def correct(sentence):
messages = [
{"role": "system", "content": stt_background},
{"role": "user", "content": sentence}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
model_dir = "model"
stt_model = AutoModel(
model=f"{model_dir}/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
vad_model=f"{model_dir}/speech_fsmn_vad_zh-cn-16k-common-pytorch",
punc_model=f"{model_dir}/punc_ct-transformer_cn-en-common-vocab471067-large",
disable_update=True
)
def stt():
chunk_size = 16000 * 3 # 3s
#chunk_stride = chunk_size # 确保每块长度足够
# 初始化麦克风输入
p = pyaudio.PyAudio()
stream = p.open(format=pyaudio.paInt16,
channels=1,
rate=16000,
input=True,
frames_per_buffer=chunk_size)
cache = {}
result_text = ""
sound_threshold = 500
wait_time = 1
no_sound_start_time = time.time()
try:
while True:
audio_data = stream.read(chunk_size)
speech_chunk = np.frombuffer(audio_data, dtype=np.int16)
if np.max(speech_chunk) > sound_threshold:
# 保存音频块为临时文件
temp_wav_path = "temp_chunk.wav"
with wave.open(temp_wav_path, 'wb') as wf:
wf.setnchannels(1)
wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
wf.setframerate(16000)
wf.writeframes(speech_chunk.tobytes())
res = stt_model.generate(input=temp_wav_path, cache=cache, is_final=False, chunk_size=chunk_size)
os.remove(temp_wav_path)
#print(f"Model output: {res}")
if res and len(res[0]["text"]) > 0:
result_text += res[0]["text"]
#corrected_text = correct(sentence=result_text)
print("未修改:", result_text)
#print("Qwen2.5修改:", corrected_text)
no_sound_start_time = time.time()
else:
if len(result_text) > 0 and time.time() - no_sound_start_time > wait_time:
print("已停顿,开始修正")
print("Qwen2.5修正:",correct(result_text))
no_sound_start_time = time.time()
return correct(result_text)
finally:
stream.stop_stream()
stream.close()
p.terminate()
print("初始化完成!")
while True:
prompt = stt()
#if prompt == '退出':
# break
messages = [
{"role": "system", "content": background},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
target_text = extract_language(response)
with open('GPT-SoVITS-v2-240821/target_text.txt', 'w', encoding='utf-8') as file:
file.write(target_text)
subprocess.run([bat_file_path], shell=True)
print("流萤猫酱:",response)
play_wav("GPT-SoVITS-v2-240821/output/output.wav")