File size: 8,403 Bytes
a1cc996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import time
import re
import wave
import pyaudio
import subprocess
import numpy as np
import concurrent.futures
import soundfile as sf
import sys
import nltk
from tools.i18n.i18n import I18nAuto
from funasr import AutoModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
sys.path.append('./GPT-SoVITS-v2-240821/GPT_SoVITS')
from inference_webui import change_gpt_weights, change_sovits_weights, get_tts_wav
i18n = I18nAuto()
nltk.download('averaged_perceptron_tagger')
nltk.download('averaged_perceptron_tagger_eng')

class QwenFireflyNeko:
    def __init__(self):
        self.bat_file_path = 'GPT-SoVITS-v2-240821\\go-cli.bat'
        self.model_name = "model/Qwen2.5-7B-Instruct"
        print("初始化中...")

        with open('background.txt', 'r', encoding='utf-8') as file:
            self.background = file.read()
        with open('STT-background.txt', 'r', encoding='utf-8') as file:
            self.stt_background = file.read()

        self.end_of_talk = False
        self.cache = {}
        self.result_text = ""
        self.sound_threshold = 500
        self.wait_time = 1
        self.no_sound_start_time = time.time()

        # 使用 4 位量化配置
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype="float16",
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True
        )

        self.model = AutoModelForCausalLM.from_pretrained(
            self.model_name,
            quantization_config=quantization_config,
            torch_dtype="auto",
            device_map="auto"
        )
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)

        model_dir = "model"
        self.stt_model = AutoModel(
            model=f"{model_dir}/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", 
            vad_model=f"{model_dir}/speech_fsmn_vad_zh-cn-16k-common-pytorch", 
            punc_model=f"{model_dir}/punc_ct-transformer_cn-en-common-vocab471067-large",  
            disable_update=True,
            ngpu=0 # 使用 CPU
        )

    def synthesize(self, GPT_model_path, SoVITS_model_path, ref_audio_path, ref_text_path, ref_language, target_text_path, target_language, output_path):
        # Read reference text
        with open(ref_text_path, 'r', encoding='utf-8') as file:
            ref_text = file.read()

        # Read target text
        with open(target_text_path, 'r', encoding='utf-8') as file:
            target_text = file.read()

        # Change model weights
        change_gpt_weights(gpt_path=GPT_model_path)
        change_sovits_weights(sovits_path=SoVITS_model_path)

        # Synthesize audio
        synthesis_result = get_tts_wav(ref_wav_path=ref_audio_path, 
                                    prompt_text=ref_text, 
                                    prompt_language=i18n(ref_language), 
                                    text=target_text, 
                                    text_language=i18n(target_language), top_p=1, temperature=1)
        
        result_list = list(synthesis_result)

        if result_list:
            last_sampling_rate, last_audio_data = result_list[-1]
            output_wav_path = os.path.join(output_path, "output.wav")
            sf.write(output_wav_path, last_audio_data, last_sampling_rate)
            print(f"Audio saved to {output_wav_path}")

    def extract_language(self, text):
        text = re.sub(r'([^)]*)', '', text)
        text = re.sub(r'【[^】]*】', '', text)
        return text

    def play_wav(self, file_path):
        chunk_size = 1024
        with wave.open(file_path, 'rb') as wf:
            p = pyaudio.PyAudio()
            stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),
                            channels=wf.getnchannels(),
                            rate=wf.getframerate(),
                            output=True)
            data = wf.readframes(chunk_size)
            while data:
                stream.write(data)
                data = wf.readframes(chunk_size)
            stream.stop_stream()
            stream.close()
            p.terminate()

    def stt(self):
        p = pyaudio.PyAudio()
        chunk_size = 16000 * 3 # 3 秒
        stream = p.open(format=pyaudio.paInt16,
                                  channels=1,
                                  rate=16000,
                                  input=True,
                                  frames_per_buffer=chunk_size)
        try:
            while True:
                audio_data = stream.read(chunk_size)
                speech_chunk = np.frombuffer(audio_data, dtype=np.int16)
                if np.max(speech_chunk) > self.sound_threshold:
                    # 保存音频块为临时文件
                    self.end_of_talk = False
                    temp_wav_path = "temp_chunk.wav"
                    with wave.open(temp_wav_path, 'wb') as wf:
                        wf.setnchannels(1)
                        wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
                        wf.setframerate(16000)
                        wf.writeframes(speech_chunk.tobytes())
                    res = self.stt_model.generate(input=temp_wav_path, cache=self.cache, is_final=False, chunk_size=chunk_size)
                    os.remove(temp_wav_path)
                    if res and len(res[0]["text"]) > 0:
                        self.result_text += res[0]["text"]
                        print("STT 未修改:", self.result_text)
                        self.no_sound_start_time = time.time()
                else:
                    if not self.end_of_talk and len(self.result_text) > 0 and time.time() - self.no_sound_start_time > self.wait_time:
                        print("已停顿")
                        self.end_of_talk = True
                        #corrected_text = self.correct(self.result_text)
                        #print("STT Qwen2.5修正:", corrected_text)
                        self.no_sound_start_time = time.time()
                        return self.result_text
        finally:
            stream.stop_stream()
            stream.close()
            p.terminate()

    def process_llm(self, prompt):
        start_time = time.time()
        messages = [
            {"role": "system", "content": self.background},
            {"role": "user", "content": prompt}
        ]
        text = self.tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
        
        generated_ids = self.model.generate(
            **model_inputs,
            max_new_tokens=512
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]

        response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        response = response.replace("流萤猫酱:", "")
        print("合成完成,耗时:", time.time() - start_time)
        print("已生成文本,正在合成语音...")
        target_text = self.extract_language(response)
        with open('target_text.txt', 'w', encoding='utf-8') as file:
            file.write(target_text)
        
        self.synthesize("GPT_weights_v2/流萤-e10.ckpt", 
                        "SoVITS_weights_v2/流萤_e15_s810.pth", 
                        "firefly/ref_audio/example.wav", 
                        "ref_text.txt", "中文", 
                        "target_text.txt", "中文", 
                        "output"
        )
        
        print("LLM 流萤猫酱:", response)
        self.play_wav("output/output.wav")

    def main(self):
        print("初始化完成!")
        with concurrent.futures.ThreadPoolExecutor() as executor:
            while True:
                prompt = self.stt()
                self.result_text = ""
                executor.submit(self.process_llm, prompt)

if __name__ == "__main__":
    app = QwenFireflyNeko()
    app.main()