File size: 8,403 Bytes
a1cc996 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import time
import re
import wave
import pyaudio
import subprocess
import numpy as np
import concurrent.futures
import soundfile as sf
import sys
import nltk
from tools.i18n.i18n import I18nAuto
from funasr import AutoModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
sys.path.append('./GPT-SoVITS-v2-240821/GPT_SoVITS')
from inference_webui import change_gpt_weights, change_sovits_weights, get_tts_wav
i18n = I18nAuto()
nltk.download('averaged_perceptron_tagger')
nltk.download('averaged_perceptron_tagger_eng')
class QwenFireflyNeko:
def __init__(self):
self.bat_file_path = 'GPT-SoVITS-v2-240821\\go-cli.bat'
self.model_name = "model/Qwen2.5-7B-Instruct"
print("初始化中...")
with open('background.txt', 'r', encoding='utf-8') as file:
self.background = file.read()
with open('STT-background.txt', 'r', encoding='utf-8') as file:
self.stt_background = file.read()
self.end_of_talk = False
self.cache = {}
self.result_text = ""
self.sound_threshold = 500
self.wait_time = 1
self.no_sound_start_time = time.time()
# 使用 4 位量化配置
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype="float16",
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
quantization_config=quantization_config,
torch_dtype="auto",
device_map="auto"
)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model_dir = "model"
self.stt_model = AutoModel(
model=f"{model_dir}/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
vad_model=f"{model_dir}/speech_fsmn_vad_zh-cn-16k-common-pytorch",
punc_model=f"{model_dir}/punc_ct-transformer_cn-en-common-vocab471067-large",
disable_update=True,
ngpu=0 # 使用 CPU
)
def synthesize(self, GPT_model_path, SoVITS_model_path, ref_audio_path, ref_text_path, ref_language, target_text_path, target_language, output_path):
# Read reference text
with open(ref_text_path, 'r', encoding='utf-8') as file:
ref_text = file.read()
# Read target text
with open(target_text_path, 'r', encoding='utf-8') as file:
target_text = file.read()
# Change model weights
change_gpt_weights(gpt_path=GPT_model_path)
change_sovits_weights(sovits_path=SoVITS_model_path)
# Synthesize audio
synthesis_result = get_tts_wav(ref_wav_path=ref_audio_path,
prompt_text=ref_text,
prompt_language=i18n(ref_language),
text=target_text,
text_language=i18n(target_language), top_p=1, temperature=1)
result_list = list(synthesis_result)
if result_list:
last_sampling_rate, last_audio_data = result_list[-1]
output_wav_path = os.path.join(output_path, "output.wav")
sf.write(output_wav_path, last_audio_data, last_sampling_rate)
print(f"Audio saved to {output_wav_path}")
def extract_language(self, text):
text = re.sub(r'([^)]*)', '', text)
text = re.sub(r'【[^】]*】', '', text)
return text
def play_wav(self, file_path):
chunk_size = 1024
with wave.open(file_path, 'rb') as wf:
p = pyaudio.PyAudio()
stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),
channels=wf.getnchannels(),
rate=wf.getframerate(),
output=True)
data = wf.readframes(chunk_size)
while data:
stream.write(data)
data = wf.readframes(chunk_size)
stream.stop_stream()
stream.close()
p.terminate()
def stt(self):
p = pyaudio.PyAudio()
chunk_size = 16000 * 3 # 3 秒
stream = p.open(format=pyaudio.paInt16,
channels=1,
rate=16000,
input=True,
frames_per_buffer=chunk_size)
try:
while True:
audio_data = stream.read(chunk_size)
speech_chunk = np.frombuffer(audio_data, dtype=np.int16)
if np.max(speech_chunk) > self.sound_threshold:
# 保存音频块为临时文件
self.end_of_talk = False
temp_wav_path = "temp_chunk.wav"
with wave.open(temp_wav_path, 'wb') as wf:
wf.setnchannels(1)
wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
wf.setframerate(16000)
wf.writeframes(speech_chunk.tobytes())
res = self.stt_model.generate(input=temp_wav_path, cache=self.cache, is_final=False, chunk_size=chunk_size)
os.remove(temp_wav_path)
if res and len(res[0]["text"]) > 0:
self.result_text += res[0]["text"]
print("STT 未修改:", self.result_text)
self.no_sound_start_time = time.time()
else:
if not self.end_of_talk and len(self.result_text) > 0 and time.time() - self.no_sound_start_time > self.wait_time:
print("已停顿")
self.end_of_talk = True
#corrected_text = self.correct(self.result_text)
#print("STT Qwen2.5修正:", corrected_text)
self.no_sound_start_time = time.time()
return self.result_text
finally:
stream.stop_stream()
stream.close()
p.terminate()
def process_llm(self, prompt):
start_time = time.time()
messages = [
{"role": "system", "content": self.background},
{"role": "user", "content": prompt}
]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
generated_ids = self.model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
response = response.replace("流萤猫酱:", "")
print("合成完成,耗时:", time.time() - start_time)
print("已生成文本,正在合成语音...")
target_text = self.extract_language(response)
with open('target_text.txt', 'w', encoding='utf-8') as file:
file.write(target_text)
self.synthesize("GPT_weights_v2/流萤-e10.ckpt",
"SoVITS_weights_v2/流萤_e15_s810.pth",
"firefly/ref_audio/example.wav",
"ref_text.txt", "中文",
"target_text.txt", "中文",
"output"
)
print("LLM 流萤猫酱:", response)
self.play_wav("output/output.wav")
def main(self):
print("初始化完成!")
with concurrent.futures.ThreadPoolExecutor() as executor:
while True:
prompt = self.stt()
self.result_text = ""
executor.submit(self.process_llm, prompt)
if __name__ == "__main__":
app = QwenFireflyNeko()
app.main() |