File size: 14,485 Bytes
6119bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import os
import time
import re
import wave
import pyaudio
import numpy as np
import concurrent.futures
import soundfile as sf
import sys
import nltk
from tools.i18n.i18n import I18nAuto
from funasr import AutoModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import pygame
from pygame.locals import *
import live2d.v3 as live2d
from live2d.v3 import StandardParams
from live2d.utils import log
from live2d.utils.lipsync import WavHandler
sys.path.append('./GPT-SoVITS-v2-240821/GPT_SoVITS')
from inference_webui import change_gpt_weights, change_sovits_weights, get_tts_wav
i18n = I18nAuto()
nltk.download('averaged_perceptron_tagger')
nltk.download('averaged_perceptron_tagger_eng')

live2d.setLogEnable(False)

class QwenFireflyNeko:
    def __init__(self):
        print("初始化中...")
        pygame.init()
        pygame.mixer.init()
        live2d.init()
        #self.audioPlayed = True
        self.bat_file_path = 'GPT-SoVITS-v2-240821\\go-cli.bat'
        self.model_name = "model/Qwen2.5-7B-Instruct"
        with open('background.txt', 'r', encoding='utf-8') as file:
            self.background = file.read()

        self.end_of_talk = False
        self.cache = {}
        self.result_text = ""
        self.sound_threshold = 500
        self.wait_time = 1
        self.no_sound_start_time = time.time()
        self.running = True

        # 使用 4 位量化配置
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype="float16",
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True
        )

        self.model = AutoModelForCausalLM.from_pretrained(
            self.model_name,
            quantization_config=quantization_config,
            torch_dtype="auto",
            device_map="auto"
        )
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)

        model_dir = "model"
        self.stt_model = AutoModel(
            model=f"{model_dir}/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", 
            vad_model=f"{model_dir}/speech_fsmn_vad_zh-cn-16k-common-pytorch", 
            punc_model=f"{model_dir}/punc_ct-transformer_cn-en-common-vocab471067-large",  
            disable_update=True,
            ngpu=0 # 使用 CPU
        )

#live2d
    def live2d_init(self):
        display = (800, 600)
        pygame.display.set_mode(display, DOUBLEBUF | OPENGL, vsync=1)
        pygame.display.set_caption("pygame window")

        if live2d.LIVE2D_VERSION == 3:
            live2d.glewInit()

        self.live2d_model = live2d.LAppModel()

        if live2d.LIVE2D_VERSION == 3:
            self.live2d_model.LoadModelJson(
                "Firefly-desktop/Firefly.model3.json"
            )

        self.live2d_model.Resize(*display)
        self.running = True
        self.live2d_model.SetAutoBlinkEnable(False)
        self.live2d_model.SetAutoBreathEnable(False)
        self.dx: float = 0.0
        self.dy: float = 0.0
        self.scale: float = 1.0
        self.wavHandler = WavHandler()
        self.lipSyncN = 2.5
        fc = None
        sc = None
        self.live2d_model.StartRandomMotion("TapBody", 300, sc, fc)

        for i in range(self.live2d_model.GetParameterCount()):
            param = self.live2d_model.GetParameter(i)
            log.Debug(
                param.id, param.type, param.value, param.max, param.min, param.default
            )

        # 设置 part 透明度
        # log.Debug(f"Part Count: {model.GetPartCount()}")
        self.partIds = self.live2d_model.GetPartIds()
        self.currentTopClickedPartId = None

    def getHitFeedback(self, x, y):
        t = time.time()
        hitPartIds = self.live2d_model.HitPart(x, y, False)
        #print(f"hit part cost: {time.time() - t}s")
        #print(f"hit parts: {hitPartIds}")
        if self.currentTopClickedPartId is not None:
            pidx = self.partIds.index(self.currentTopClickedPartId)
            self.live2d_model.SetPartOpacity(pidx, 1)
            # model.SetPartScreenColor(pidx, 0.0, 0.0, 0.0, 1.0)
            self.live2d_model.SetPartMultiplyColor(pidx, 1.0, 1.0, 1., 1)
            # print("Part Screen Color:", model.GetPartScreenColor(pidx))
            #print("Part Multiply Color:", self.live2d_model.GetPartMultiplyColor(pidx))
        if len(hitPartIds) > 0:
            ret = hitPartIds[0]
            return ret

    
    def live2d_main(self):
        self.live2d_model.SetExpression("expression2.exp3")
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                self.running = False
                return
            if event.type == pygame.MOUSEBUTTONDOWN:
                x, y = pygame.mouse.get_pos()
                    # currentTopClickedPartId = getHitFeedback(x, y)
                    # log.Info(f"Clicked Part: {currentTopClickedPartId}")
                    # model.Touch(x, y, onFinishMotionHandler=lambda : print("motion finished"), onStartMotionHandler=lambda group, no: print(f"started motion: {group} {no}"))
                    # model.StartRandomMotion(group="TapBody", onFinishMotionHandler=lambda : print("motion finished"), onStartMotionHandler=lambda group, no: print(f"started motion: {group} {no}"))
                    #model.SetRandomExpression()
                self.live2d_model.StartRandomMotion(priority=3)

            if event.type == pygame.KEYDOWN:
                if event.key == pygame.K_LEFT:
                    self.dx -= 0.1
                elif event.key == pygame.K_RIGHT:
                    self.dx += 0.1
                elif event.key == pygame.K_UP:
                    self.dy += 0.1
                elif event.key == pygame.K_DOWN:
                    self.dy -= 0.1
                elif event.key == pygame.K_i:
                    self.scale += 0.01
                elif event.key == pygame.K_u:
                    self.scale -= 0.01
                elif event.key == pygame.K_r:
                    self.live2d_model.StopAllMotions()
                    self.live2d_model.ResetPose()
                elif event.key == pygame.K_e:
                    self.live2d_model.ResetExpression()
            if event.type == pygame.MOUSEMOTION:
                self.live2d_model.Drag(*pygame.mouse.get_pos())
                self.currentTopClickedPartId = self.getHitFeedback(*pygame.mouse.get_pos())


        self.live2d_model.Update()

        if self.currentTopClickedPartId is not None:
            pidx = self.partIds.index(self.currentTopClickedPartId)
            self.live2d_model.SetPartOpacity(pidx, 0.5)
                # 在此以 255 为最大灰度级
                # 原色和屏幕色取反并相乘,再取反
                # 以红色通道为例:r = 255 - (255 - 原色.r) * (255 - screenColor.r) / 255
                # 通道数值越大,该通道颜色对最终结果的贡献越大,下面的调用即为突出蓝色的效果
                # model.SetPartScreenColor(pidx, .0, 0., 1.0, 1)

                # r = multiplyColor.r * 原色.r / 255
                # 下面即为仅保留蓝色通道的结果
            self.live2d_model.SetPartMultiplyColor(pidx, .0, .0, 1., .9)

        if self.wavHandler.Update():
                # 利用 wav 响度更新 嘴部张合
            self.live2d_model.AddParameterValue(
                StandardParams.ParamMouthOpenY, self.wavHandler.GetRms() * self.lipSyncN
            )
            # 一般通过设置 param 去除水印
            # model.SetParameterValue("Param14", 1, 1)

        self.live2d_model.SetOffset(self.dx, self.dy)
        self.live2d_model.SetScale(self.scale)
        live2d.clearBuffer(1.0, 1.0, 1.0, 1)
        self.live2d_model.Draw()
        pygame.display.flip()
        pygame.time.wait(10)

#tts
    def synthesize(self, GPT_model_path, SoVITS_model_path, ref_audio_path, ref_text_path, ref_language, target_text_path, target_language, output_path):
        # Read reference text
        with open(ref_text_path, 'r', encoding='utf-8') as file:
            ref_text = file.read()

        # Read target text
        with open(target_text_path, 'r', encoding='utf-8') as file:
            target_text = file.read()

        # Change model weights
        change_gpt_weights(gpt_path=GPT_model_path)
        change_sovits_weights(sovits_path=SoVITS_model_path)

        # Synthesize audio
        synthesis_result = get_tts_wav(ref_wav_path=ref_audio_path, 
                                    prompt_text=ref_text, 
                                    prompt_language=i18n(ref_language), 
                                    text=target_text, 
                                    text_language=i18n(target_language), top_p=1, temperature=1)
        
        result_list = list(synthesis_result)

        if result_list:
            last_sampling_rate, last_audio_data = result_list[-1]
            output_wav_path = os.path.join(output_path, "output.wav")
            sf.write(output_wav_path, last_audio_data, last_sampling_rate)
            print(f"Audio saved to {output_wav_path}")

    def extract_language(self, text):
        text = re.sub(r'([^)]*)', '', text)
        text = re.sub(r'【[^】]*】', '', text)
        return text

    def play_wav(self, file_path):
        chunk_size = 1024
        with wave.open(file_path, 'rb') as wf:
            p = pyaudio.PyAudio()
            self.wavHandler.Start(file_path)
            stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),
                            channels=wf.getnchannels(),
                            rate=wf.getframerate(),
                            output=True)
            data = wf.readframes(chunk_size)
            while data:
                stream.write(data)
                data = wf.readframes(chunk_size)
            stream.stop_stream()
            stream.close()
            p.terminate()
            

    def stt(self):
        p = pyaudio.PyAudio()
        chunk_size = 16000 * 3 # 3 秒
        stream = p.open(format=pyaudio.paInt16,
                                  channels=1,
                                  rate=16000,
                                  input=True,
                                  frames_per_buffer=chunk_size)
        try:
            while self.running:
                audio_data = stream.read(chunk_size)
                speech_chunk = np.frombuffer(audio_data, dtype=np.int16)
                if np.max(speech_chunk) > self.sound_threshold:
                    # 保存音频块为临时文件
                    self.end_of_talk = False
                    temp_wav_path = "temp_chunk.wav"
                    with wave.open(temp_wav_path, 'wb') as wf:
                        wf.setnchannels(1)
                        wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
                        wf.setframerate(16000)
                        wf.writeframes(speech_chunk.tobytes())
                    res = self.stt_model.generate(input=temp_wav_path, cache=self.cache, is_final=False, chunk_size=chunk_size)
                    os.remove(temp_wav_path)
                    if res and len(res[0]["text"]) > 0:
                        self.result_text += res[0]["text"]
                        print("STT 未修改:", self.result_text)
                        self.no_sound_start_time = time.time()
                else:
                    if not self.end_of_talk and len(self.result_text) > 0 and time.time() - self.no_sound_start_time > self.wait_time:
                        print("已停顿")
                        self.end_of_talk = True
                        self.no_sound_start_time = time.time()
                        return self.result_text
        finally:
            stream.stop_stream()
            stream.close()
            p.terminate()

#llm
    def process_llm(self, prompt):
        start_time = time.time()
        messages = [
            {"role": "system", "content": self.background},
            {"role": "user", "content": prompt}
        ]
        text = self.tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
        
        generated_ids = self.model.generate(
            **model_inputs,
            max_new_tokens=512
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]

        response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        response = response.replace("流萤猫酱:", "")
        print("合成完成,耗时:", time.time() - start_time)
        print("已生成文本,正在合成语音...")
        target_text = self.extract_language(response)
        with open('target_text.txt', 'w', encoding='utf-8') as file:
            file.write(target_text)
        
        self.synthesize("GPT_weights_v2/流萤-e10.ckpt", 
                        "SoVITS_weights_v2/流萤_e15_s810.pth", 
                        "firefly/ref_audio/example.wav", 
                        "ref_text.txt", "中文", 
                        "target_text.txt", "中文", 
                        "output"
        )
        
        print("LLM 流萤猫酱:", response)
        self.play_wav("output/output.wav")

    def main(self):
        self.live2d_init()
        print("初始化完成!")
        with concurrent.futures.ThreadPoolExecutor() as executor: #ThreadPoolExecutor
            future_stt = executor.submit(self.stt)
            while self.running:
                if future_stt.done():
                    prompt = future_stt.result()
                    self.result_text = ""
                    executor.submit(self.process_llm, prompt)
                    future_stt = executor.submit(self.stt)

                self.live2d_main()

            live2d.dispose()
            pygame.quit()
            quit()

if __name__ == "__main__":
    app = QwenFireflyNeko()
    app.main()