File size: 5,865 Bytes
4d6be10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import time
import re
import wave
import pyaudio
import subprocess
import numpy as np
from funasr import AutoModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
bat_file_path = 'GPT-SoVITS-v2-240821\\go-cli.bat'
model_name = "model/Qwen2.5-7B-Instruct"
print("初始化中...")
with open('background.txt', 'r', encoding='utf-8') as file:
background = file.read()
with open('STT-background.txt', 'r', encoding='utf-8') as file:
stt_background = file.read()
def extract_language(text):
text = re.sub(r'([^)]*)', '', text)
text = re.sub(r'【[^】]*】', '', text)
return text
def play_wav(file_path):
with wave.open(file_path, 'rb') as wf:
p = pyaudio.PyAudio()
stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),
channels=wf.getnchannels(),
rate=wf.getframerate(),
output=True)
data = wf.readframes(1024)
while data:
stream.write(data)
data = wf.readframes(1024)
stream.stop_stream()
stream.close()
p.terminate()
# 使用 4 位量化配置
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype="float16",
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
subprocess.run([bat_file_path], shell=True)
def correct(sentence):
messages = [
{"role": "system", "content": stt_background},
{"role": "user", "content": sentence}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
model_dir = "model"
stt_model = AutoModel(
model=f"{model_dir}/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
vad_model=f"{model_dir}/speech_fsmn_vad_zh-cn-16k-common-pytorch",
punc_model=f"{model_dir}/punc_ct-transformer_cn-en-common-vocab471067-large",
disable_update=True
)
def stt():
chunk_size = 16000 * 3 # 3s
#chunk_stride = chunk_size # 确保每块长度足够
# 初始化麦克风输入
p = pyaudio.PyAudio()
stream = p.open(format=pyaudio.paInt16,
channels=1,
rate=16000,
input=True,
frames_per_buffer=chunk_size)
cache = {}
result_text = ""
sound_threshold = 500
wait_time = 1
no_sound_start_time = time.time()
try:
while True:
audio_data = stream.read(chunk_size)
speech_chunk = np.frombuffer(audio_data, dtype=np.int16)
if np.max(speech_chunk) > sound_threshold:
# 保存音频块为临时文件
temp_wav_path = "temp_chunk.wav"
with wave.open(temp_wav_path, 'wb') as wf:
wf.setnchannels(1)
wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
wf.setframerate(16000)
wf.writeframes(speech_chunk.tobytes())
res = stt_model.generate(input=temp_wav_path, cache=cache, is_final=False, chunk_size=chunk_size)
os.remove(temp_wav_path)
#print(f"Model output: {res}")
if res and len(res[0]["text"]) > 0:
result_text += res[0]["text"]
#corrected_text = correct(sentence=result_text)
print("未修改:", result_text)
#print("Qwen2.5修改:", corrected_text)
no_sound_start_time = time.time()
else:
if len(result_text) > 0 and time.time() - no_sound_start_time > wait_time:
print("已停顿,开始修正")
print("Qwen2.5修正:",correct(result_text))
no_sound_start_time = time.time()
return correct(result_text)
finally:
stream.stop_stream()
stream.close()
p.terminate()
print("初始化完成!")
while True:
prompt = stt()
#if prompt == '退出':
# break
messages = [
{"role": "system", "content": background},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
target_text = extract_language(response)
with open('GPT-SoVITS-v2-240821/target_text.txt', 'w', encoding='utf-8') as file:
file.write(target_text)
subprocess.run([bat_file_path], shell=True)
print("流萤猫酱:",response)
play_wav("GPT-SoVITS-v2-240821/output/output.wav")
|