Sharath45 commited on
Commit
9212f8a
·
verified ·
1 Parent(s): 8077359

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ metrics:
3
+ - f1
4
+ - accuracy
5
+ base_model:
6
+ - facebook/wav2vec2-base-960h
7
+ new_version: facebook/wav2vec2-base
8
+ pipeline_tag: audio-classification
9
+ tags:
10
+ - speech_emotion_recognition
11
+ - Mel-Frequency Cepstral Coefficients
12
+ - wav2vec2
13
+ - bi-lstm
14
+ - cnn
15
+ ---
16
+
17
+ ---
18
+ license: apache-2.0
19
+ tags:
20
+ - audio
21
+ - mfcc
22
+ - speech-recognition
23
+ - classification
24
+ ---
25
+
26
+ # Updated MFCC Model
27
+
28
+ ## Model Description
29
+ This model leverages updated Mel-Frequency Cepstral Coefficients (MFCC) features to perform robust audio analysis. It is designed for tasks such as audio classification or speech recognition, capturing spectral properties of audio signals even in noisy conditions.
30
+
31
+ ## Intended Use
32
+ - **Primary Use:** Audio classification, speech recognition, or any audio analysis tasks.
33
+ - **Target Users:** Researchers, developers, and hobbyists working in audio processing and machine learning.
34
+ - **Out-of-Scope Use:** Not intended for real-time processing in highly dynamic environments without further adaptation or for applications requiring precise speech-to-text conversion in multiple languages.
35
+
36
+ ## Model Architecture
37
+ - **Base Architecture:** (e.g., Convolutional Neural Network, Recurrent Neural Network, Transformer, etc.)
38
+ - **Input:** Preprocessed audio signals represented as updated MFCC features.
39
+ - **Output:** Depending on the task, the model outputs class probabilities or transcriptions.
40
+
41
+
42
+ ## Training Data
43
+ - **Dataset(s):** (CREMA-D, RAVDESS)
44
+ - **Preprocessing:** Audio normalization, MFCC extraction parameters (e.g., number of coefficients, window size, hop length).
45
+ - **Splits:** Details on training, validation, and testing splits.
46
+ - **Augmentation:** (Apply random pitch shifting and noise addition)
47
+
48
+ ## Evaluation Metrics
49
+ - **Accuracy:**
50
+ - **Precision/Recall/F1-Score:**
51
+ - **Additional Metrics:** (e.g., ROC-AUC, confusion matrices, etc.)
52
+ - **Benchmarking:** (Optional – describe how your model compares against baselines.)
53
+
54
+ ## Limitations
55
+ - Sensitivity to very high levels of background noise.
56
+ - Potential performance degradation on audio types not represented in the training data.
57
+ - (Any other model-specific limitations or failure modes.)
58
+
59
+ ## Ethical Considerations
60
+ - Ensure privacy and consent when processing audio data.
61
+ - Consider potential biases if the training data is not diverse.
62
+ - Avoid deploying in contexts where misclassifications could have serious consequences without thorough validation.
63
+
64
+ ## How to Use
65
+ Below is an example code snippet to load and use the model:
66
+
67
+ ```python
68
+ from transformers import AutoModel, AutoTokenizer
69
+
70
+ # Replace 'username/updated-mfcc-model' with your model's path on Hugging Face
71
+ model = AutoModel.from_pretrained("username/updated-mfcc-model")
72
+ tokenizer = AutoTokenizer.from_pretrained("username/updated-mfcc-model")
73
+
74
+ # Example: processing an audio file
75
+ # audio_input = ... (your audio processing code to extract MFCC features)
76
+ # outputs = model(audio_input)
77
+ # print(outputs)