File size: 2,612 Bytes
f9defbd
 
 
 
0df86bb
 
 
c1a4c37
 
f9defbd
 
 
 
 
 
 
 
 
 
 
5f8bac3
f9defbd
0df86bb
f9defbd
 
 
5f8bac3
f9defbd
 
 
5f8bac3
0df86bb
f9defbd
 
 
 
 
 
0df86bb
f9defbd
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8bac3
 
f9defbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
language:
- it
- en
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation
base_model:
- meta-llama/Llama-3.1-8B
---

# Llama-3.1-8B-Italian-FVT
<div align="center">

<img src="https://github.com/Andrew-Wyn/images/blob/master/sava/italian_adapt-img.jpg?raw=true" width="400" height="400" style="border-radius:10%" />

</div>

The **Llama-3.1-8B-Adapted** collection of large language models (LLMs), is a collection of adapted generative models in 8B (text in/text out), adapted models from **Llama-3.1-8B**.

*Llama-3.1-8B-Italian-FVT* is a continually trained Llama model, after tokenizer substitution.

The tokenizer of this model after adaptation is the same as [Minverva-3B](https://huggingface.co/sapienzanlp/Minerva-3B-base-v1.0).

**Model developer:** SapienzaNLP, ISTI-CNR, ILC-CNR

**Model Architecture:** Llama-3.1-8B-Adapted is an auto-regressive language model that uses an optimized transformer architecture.

## Data used for the adaptation

The **Llama-3.1-8B-Adapted** model was trained on a collection of Italian and English data extracted from [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX).
The data was extracted to be skewed toward Italian language with a ratio of one over four. Extracting the first 9B tokens from the Italian part of CulturaX and the first 3B tokens from the English part of CulturaX.


## Use with Transformers

You can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function.

Make sure to update your transformers installation via `pip install --upgrade transformers`.

```python
import transformers
import torch

model_id = "SemanticAlignment/Llama-3.1-8B-Italian-FVT"

pipeline = transformers.pipeline(
    "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto"
)

pipeline("Cosa si può fare in una bella giornata di sole?")
```

Code: https://github.com/SapienzaNLP/sava

## Citation

If you use any part of this work, please consider citing the paper as follows:

```bibtex
@misc{moroni2025optimizingllmsitalianreducing,
      title={Optimizing LLMs for Italian: Reducing Token Fertility and Enhancing Efficiency Through Vocabulary Adaptation}, 
      author={Luca Moroni and Giovanni Puccetti and Pere-Lluis Huguet Cabot and Andrei Stefan Bejgu and Edoardo Barba and Alessio Miaschi and Felice Dell'Orletta and Andrea Esuli and Roberto Navigli},
      year={2025},
      eprint={2504.17025},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2504.17025}, 
}
```