SamLowe commited on
Commit
a404282
·
1 Parent(s): 4577f51

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -1
README.md CHANGED
@@ -7,7 +7,6 @@ tags:
7
  - emotions
8
  - multi-class-classification
9
  - multi-label-classification
10
- - optimum
11
  datasets:
12
  - go_emotions
13
  models:
@@ -17,3 +16,78 @@ inference: false
17
  widget:
18
  - text: ONNX is so much faster, its very handy!
19
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  - emotions
8
  - multi-class-classification
9
  - multi-label-classification
 
10
  datasets:
11
  - go_emotions
12
  models:
 
16
  widget:
17
  - text: ONNX is so much faster, its very handy!
18
  ---
19
+
20
+ ### Overview
21
+
22
+ This is a multi-label, multi-class linear classifer for emotions that works with [BGE-small-en-v1.5 embeddings](https://huggingface.co/BAAI/bge-small-en-v1.5), having been trained on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset.
23
+
24
+ ### Labels
25
+
26
+ The 28 labels from the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset are:
27
+ ```
28
+ ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral']
29
+ ```
30
+
31
+ ### Metrics (exact match of labels per item)
32
+
33
+ This is a multi-label, multi-class dataset, so each label is effectively a separate binary classification. Evaluating across all labels per item in the go_emotions test split the metrics are shown below.
34
+
35
+ Using a fixed threshold of 0.5 to convert the scores to binary predictions for each label, the metrics (evaluated on the go_emotions test split) are:
36
+
37
+ - Precision: 0.602
38
+ - Recall: 0.250
39
+ - F1: 0.303
40
+
41
+ Simple mean of labels: {'precision': 0.445, 'recall': 0.476, 'f1': 0.449}
42
+ Weighted average (using support): {'precision': 0.472, 'recall': 0.582, 'f1': 0.514}
43
+
44
+ Optimising the threshold per label to optimise the F1 metric, the metrics (evaluated on the go_emotions test split) are:
45
+
46
+ - Precision: 0.445
47
+ - Recall: 0.476
48
+ - F1: 0.449
49
+
50
+ Weighted by the relative support of each label in the dataset, this is:
51
+
52
+ - Precision: 0.472
53
+ - Recall: 0.582
54
+ - F1: 0.514
55
+
56
+ ### Metrics (per-label)
57
+
58
+ This is a multi-label, multi-class dataset, so each label is effectively a separate binary classification and metrics are better measured per label.
59
+
60
+ Using a fixed threshold of 0.5 to convert the scores to binary predictions for each label, the metrics (evaluated on the go_emotions test split) are:
61
+
62
+ | | f1 | precision | recall | support | threshold |
63
+ | -------------- | ----- | --------- | ------ | ------- | --------- |
64
+ | admiration | 0.497 | 0.731 | 0.377 | 504 | 0.5 |
65
+ | amusement | 0.484 | 0.793 | 0.348 | 264 | 0.5 |
66
+ | anger | 0.162 | 0.528 | 0.096 | 198 | 0.5 |
67
+ | annoyance | 0.042 | 0.636 | 0.022 | 320 | 0.5 |
68
+ | approval | 0.106 | 0.769 | 0.057 | 351 | 0.5 |
69
+ | caring | 0.182 | 0.500 | 0.111 | 135 | 0.5 |
70
+ | confusion | 0.170 | 0.652 | 0.098 | 153 | 0.5 |
71
+ | curiosity | 0.284 | 0.529 | 0.194 | 284 | 0.5 |
72
+ | desire | 0.236 | 0.481 | 0.157 | 83 | 0.5 |
73
+ | disappointment | 0.039 | 0.750 | 0.020 | 151 | 0.5 |
74
+ | disapproval | 0.140 | 0.636 | 0.079 | 267 | 0.5 |
75
+ | disgust | 0.273 | 0.677 | 0.171 | 123 | 0.5 |
76
+ | embarrassment | 0.314 | 0.571 | 0.216 | 37 | 0.5 |
77
+ | excitement | 0.130 | 0.400 | 0.078 | 103 | 0.5 |
78
+ | fear | 0.527 | 0.667 | 0.436 | 78 | 0.5 |
79
+ | gratitude | 0.792 | 0.908 | 0.702 | 352 | 0.5 |
80
+ | grief | 0.385 | 0.250 | 0.833 | 6 | 0.5 |
81
+ | joy | 0.276 | 0.771 | 0.168 | 161 | 0.5 |
82
+ | love | 0.606 | 0.800 | 0.487 | 238 | 0.5 |
83
+ | nervousness | 0.269 | 0.241 | 0.304 | 23 | 0.5 |
84
+ | optimism | 0.305 | 0.720 | 0.194 | 186 | 0.5 |
85
+ | pride | 0.375 | 0.375 | 0.375 | 16 | 0.5 |
86
+ | realization | 0.013 | 0.250 | 0.007 | 145 | 0.5 |
87
+ | relief | 0.353 | 0.500 | 0.273 | 11 | 0.5 |
88
+ | remorse | 0.469 | 0.548 | 0.411 | 56 | 0.5 |
89
+ | sadness | 0.365 | 0.731 | 0.244 | 156 | 0.5 |
90
+ | surprise | 0.142 | 0.786 | 0.078 | 141 | 0.5 |
91
+ | neutral | 0.547 | 0.644 | 0.475 | 1787 | 0.5 |
92
+
93
+