EastBrook commited on
Commit
05e564f
·
verified ·
1 Parent(s): f4e8eac

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|audio_end|>": 151667,
5
+ "<|audio_pad|>": 151665,
6
+ "<|audio_start|>": 151666,
7
+ "<|box_end|>": 151649,
8
+ "<|box_start|>": 151648,
9
+ "<|endoftext|>": 151643,
10
+ "<|file_sep|>": 151664,
11
+ "<|fim_middle|>": 151660,
12
+ "<|fim_pad|>": 151662,
13
+ "<|fim_prefix|>": 151659,
14
+ "<|fim_suffix|>": 151661,
15
+ "<|im_end|>": 151645,
16
+ "<|im_start|>": 151644,
17
+ "<|image_pad|>": 151655,
18
+ "<|object_ref_end|>": 151647,
19
+ "<|object_ref_start|>": 151646,
20
+ "<|quad_end|>": 151651,
21
+ "<|quad_start|>": 151650,
22
+ "<|repo_name|>": 151663,
23
+ "<|video_pad|>": 151656,
24
+ "<|vision_end|>": 151653,
25
+ "<|vision_pad|>": 151654,
26
+ "<|vision_start|>": 151652
27
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% set audio_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif content['type'] == 'audio' or 'audio' in content %}{% set audio_count.value = audio_count.value + 1 %}{% if add_audio_id %}Audio {{ audio_count.value }}: {% endif %}<|audio_start|><|audio_pad|><|audio_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/disk2/home/wujianfeng/LLaMA-Factory_audio/qwen2_mm_14B_pt_1/checkpoint-12000/",
3
+ "architectures": [
4
+ "Qwen2MMForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "audio_config": {
8
+ "_attn_implementation_autoset": true,
9
+ "activation_dropout": 0.0,
10
+ "activation_function": "relu",
11
+ "architectures": [
12
+ "SeamlessM4Tv2Model"
13
+ ],
14
+ "attention_dropout": 0.1,
15
+ "dropout": 0.1,
16
+ "encoder_attention_heads": 16,
17
+ "encoder_ffn_dim": 8192,
18
+ "encoder_layerdrop": 0.05,
19
+ "encoder_layers": 24,
20
+ "hidden_size": 1024,
21
+ "initializer_range": 0.02,
22
+ "is_encoder_decoder": true,
23
+ "layer_norm_eps": 1e-05,
24
+ "leaky_relu_slope": 0.1,
25
+ "max_new_tokens": 256,
26
+ "max_position_embeddings": 4096,
27
+ "model_type": "qwen2_seamless_encoder",
28
+ "num_attention_heads": 16,
29
+ "num_hidden_layers": 24,
30
+ "pad_token_id": 0,
31
+ "resblock_dilation_sizes": [
32
+ [
33
+ 1,
34
+ 3,
35
+ 5
36
+ ],
37
+ [
38
+ 1,
39
+ 3,
40
+ 5
41
+ ],
42
+ [
43
+ 1,
44
+ 3,
45
+ 5
46
+ ]
47
+ ],
48
+ "resblock_kernel_sizes": [
49
+ 3,
50
+ 7,
51
+ 11
52
+ ],
53
+ "sampling_rate": 16000,
54
+ "scale_embedding": true,
55
+ "spkr_embed_dim": 256,
56
+ "use_cache": true
57
+ },
58
+ "audio_end_token_id": 151667,
59
+ "audio_start_token_id": 151666,
60
+ "audio_token_id": 151665,
61
+ "auto_map": {
62
+ "AutoConfig": "configuration_qwen2_mm.Qwen2MMConfig",
63
+ "AutoModel": "modeling_qwen2_mm.Qwen2MMForConditionalGeneration",
64
+ "AutoModelForCausalLM": "modeling_qwen2_mm.Qwen2MMForConditionalGeneration"
65
+ },
66
+ "bos_token_id": 151643,
67
+ "eos_token_id": 151645,
68
+ "hidden_act": "silu",
69
+ "hidden_size": 5120,
70
+ "image_token_id": 151655,
71
+ "initializer_range": 0.02,
72
+ "intermediate_size": 13824,
73
+ "llm_path": "/mnt/diskhd/Backup/DownloadModel/Qwen2.5-14B-Instruct/",
74
+ "max_position_embeddings": 32768,
75
+ "max_window_layers": 70,
76
+ "model_type": "qwen2_mm",
77
+ "num_attention_heads": 40,
78
+ "num_hidden_layers": 48,
79
+ "num_key_value_heads": 8,
80
+ "rms_norm_eps": 1e-06,
81
+ "rope_scaling": null,
82
+ "rope_theta": 1000000.0,
83
+ "sliding_window": 131072,
84
+ "torch_dtype": "bfloat16",
85
+ "transformers_version": "4.45.0",
86
+ "use_cache": false,
87
+ "use_sliding_window": false,
88
+ "video_token_id": 151656,
89
+ "vision_config": {
90
+ "model_type": "qwen2_vl"
91
+ },
92
+ "vision_end_token_id": 151653,
93
+ "vision_start_token_id": 151652,
94
+ "vision_token_id": 151654,
95
+ "vocab_size": 152064
96
+ }
configuration_qwen2_mm.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Qwen2Audio model configuration"""
15
+
16
+ from transformers.configuration_utils import PretrainedConfig
17
+ from transformers.utils import logging
18
+ from transformers import CONFIG_MAPPING
19
+
20
+ import os
21
+ from typing import Union
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class Qwen2SeamlessEncoderConfig(PretrainedConfig):
27
+
28
+ model_type = "qwen2_seamless_encoder"
29
+
30
+ def __init__(
31
+ self,
32
+ speech_encoder_layers=24,
33
+ speech_encoder_attention_heads=16,
34
+ speech_encoder_intermediate_size=4096,
35
+ speech_encoder_hidden_act="swish",
36
+ speech_encoder_dropout=0.0,
37
+ add_adapter=True,
38
+ speech_encoder_layerdrop=0.1,
39
+ feature_projection_input_dim=160,
40
+ adaptor_kernel_size=8,
41
+ adaptor_stride=8,
42
+ adaptor_dropout=0.1,
43
+ num_adapter_layers=1,
44
+ position_embeddings_type="relative_key",
45
+ conv_depthwise_kernel_size=31,
46
+ left_max_position_embeddings=64,
47
+ right_max_position_embeddings=8,
48
+ speech_encoder_chunk_size=20000,
49
+ speech_encoder_left_chunk_num=128,
50
+ **kwargs,
51
+ ):
52
+ super().__init__(**kwargs)
53
+
54
+ self.speech_encoder_layers = speech_encoder_layers
55
+ self.speech_encoder_hidden_act = speech_encoder_hidden_act
56
+ self.speech_encoder_dropout = speech_encoder_dropout
57
+ self.speech_encoder_attention_heads = speech_encoder_attention_heads
58
+ self.speech_encoder_layerdrop = speech_encoder_layerdrop
59
+ self.speech_encoder_intermediate_size = speech_encoder_intermediate_size
60
+ self.feature_projection_input_dim = feature_projection_input_dim
61
+ self.adaptor_kernel_size = adaptor_kernel_size
62
+ self.adaptor_stride = adaptor_stride
63
+ self.adaptor_dropout = adaptor_dropout
64
+ self.num_adapter_layers = num_adapter_layers
65
+ self.position_embeddings_type = position_embeddings_type
66
+ self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
67
+ self.add_adapter = add_adapter
68
+ self.left_max_position_embeddings = left_max_position_embeddings
69
+ self.right_max_position_embeddings = right_max_position_embeddings
70
+ self.speech_encoder_chunk_size = speech_encoder_chunk_size
71
+ self.speech_encoder_left_chunk_num = speech_encoder_left_chunk_num
72
+ self.audio_path = "/mnt/diskhd/Backup/DownloadModel/seamless-m4t-v2-large/"
73
+
74
+
75
+
76
+ class Qwen2VLVisionConfig(PretrainedConfig):
77
+ model_type = "qwen2_vl"
78
+
79
+ def __init__(
80
+ self,
81
+ depth=32,
82
+ embed_dim=1280,
83
+ hidden_size=3584,
84
+ hidden_act="quick_gelu",
85
+ mlp_ratio=4,
86
+ num_heads=16,
87
+ in_channels=3,
88
+ patch_size=14,
89
+ spatial_merge_size=2,
90
+ temporal_patch_size=2,
91
+ **kwargs,
92
+ ):
93
+ super().__init__(**kwargs)
94
+
95
+ self.depth = depth
96
+ self.embed_dim = embed_dim
97
+ self.hidden_size = hidden_size
98
+ self.hidden_act = hidden_act
99
+ self.mlp_ratio = mlp_ratio
100
+ self.num_heads = num_heads
101
+ self.in_channels = in_channels
102
+ self.patch_size = patch_size
103
+ self.spatial_merge_size = spatial_merge_size
104
+ self.temporal_patch_size = temporal_patch_size
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
108
+ cls._set_token_in_kwargs(kwargs)
109
+
110
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
111
+
112
+ if 1:#config_dict.get("model_type") == "qwen2_vl":
113
+ config_dict = config_dict["vision_config"]
114
+
115
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
116
+ logger.warning(
117
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
118
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
119
+ )
120
+
121
+ return cls.from_dict(config_dict, **kwargs)
122
+
123
+
124
+
125
+ class Qwen2MMConfig(PretrainedConfig):
126
+
127
+ model_type = "qwen2_mm"
128
+ is_composition = False
129
+
130
+ def __init__(
131
+ self,
132
+ vocab_size=152064,
133
+ hidden_size=8192,
134
+ intermediate_size=29568,
135
+ num_hidden_layers=80,
136
+ num_attention_heads=64,
137
+ num_key_value_heads=8,
138
+ hidden_act="silu",
139
+ max_position_embeddings=32768,
140
+ initializer_range=0.02,
141
+ rms_norm_eps=1e-05,
142
+ use_cache=True,
143
+ tie_word_embeddings=False,
144
+ rope_theta=1000000.0,
145
+ use_sliding_window=False,
146
+ sliding_window=4096,
147
+ max_window_layers=80,
148
+ attention_dropout=0.0,
149
+ audio_config=None,
150
+ vision_config=None,
151
+ rope_scaling=None,
152
+ **kwargs,
153
+ ):
154
+ if isinstance(vision_config, dict):
155
+ self.vision_config = Qwen2VLVisionConfig(**vision_config)
156
+ elif vision_config is None:
157
+ self.vision_config = Qwen2VLVisionConfig()
158
+
159
+ if isinstance(audio_config, dict):
160
+ self.audio_config = Qwen2SeamlessEncoderConfig(**audio_config)
161
+ elif audio_config is None:
162
+ self.audio_config = Qwen2SeamlessEncoderConfig()
163
+
164
+ self.vocab_size = vocab_size
165
+ self.max_position_embeddings = max_position_embeddings
166
+ self.hidden_size = hidden_size
167
+ self.intermediate_size = intermediate_size
168
+ self.num_hidden_layers = num_hidden_layers
169
+ self.num_attention_heads = num_attention_heads
170
+ self.use_sliding_window = use_sliding_window
171
+ self.sliding_window = sliding_window
172
+ self.max_window_layers = max_window_layers
173
+
174
+ # for backward compatibility
175
+ if num_key_value_heads is None:
176
+ num_key_value_heads = num_attention_heads
177
+
178
+ self.num_key_value_heads = num_key_value_heads
179
+ self.hidden_act = hidden_act
180
+ self.initializer_range = initializer_range
181
+ self.rms_norm_eps = rms_norm_eps
182
+ self.use_cache = use_cache
183
+ self.rope_theta = rope_theta
184
+ self.attention_dropout = attention_dropout
185
+ self.llm_path = "/mnt/diskhd/Backup/DownloadModel/Qwen2.5-3B-Instruct/"
186
+ self.auto_map = {
187
+ "AutoConfig": "configuration_qwen2_seamless.Qwen2MMConfig",
188
+ "AutoModel": "modeling_qwen2_seamless.Qwen2SeamlessForConditionalGeneration"
189
+ }
190
+ self.rope_scaling = rope_scaling
191
+
192
+ super().__init__(**kwargs)
193
+
194
+
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.45.0"
14
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step64000
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0794c18bb2c565a22ee9898edaa9271602e93e4c2ef093a37facc6f588eaa8a
3
+ size 4898405744
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fc1082232aa0cfe6b881ec653bb8d4a01b26c6b1e2fec8f811db3574529702f
3
+ size 4954848288
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ddc816cefec6d9de513c9f363b539da87ef731e27dd61a130cea7f5d90d2135
3
+ size 4954848360
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0cbfc3ac73940b374fb776b60569fcd43aaef97f2a95231ea1f1686060d008e
3
+ size 4954848360
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52a83a5947cd1a9d8e69e3f60dde0e3e744330982be91d107638496bf151b66a
3
+ size 4954848360
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe08358609b86a8d4b31ca8828d15c60b57311ec46b949636b26d18b20adaeaa
3
+ size 4545898608
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:961282a7d1b18000f29487a35cc8e5357190a5222db03c2434bdf25e6d97731f
3
+ size 1557135488
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_qwen2_mm.py ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch Qwen2Audio model."""
16
+
17
+ import math
18
+ from dataclasses import dataclass
19
+ from typing import Any, Dict, List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.utils.checkpoint
23
+ from torch import nn
24
+ from functools import lru_cache
25
+
26
+ from transformers.activations import ACT2FN
27
+ from transformers.cache_utils import Cache, EncoderDecoderCache, StaticCache
28
+ from transformers.generation import GenerationMixin
29
+ from transformers.modeling_outputs import BaseModelOutput, ModelOutput, CausalLMOutputWithPast
30
+ from transformers.modeling_utils import PreTrainedModel
31
+ from transformers.utils import (
32
+ add_start_docstrings,
33
+ add_start_docstrings_to_model_forward,
34
+ is_flash_attn_2_available,
35
+ is_flash_attn_greater_or_equal_2_10,
36
+ logging,
37
+ replace_return_docstrings,
38
+ )
39
+ from transformers import AutoModel, AutoModelForCausalLM, AutoConfig, SeamlessM4Tv2Model, Qwen2ForCausalLM, Qwen2PreTrainedModel, Qwen2Model
40
+ from transformers.models.seamless_m4t_v2.modeling_seamless_m4t_v2 import SeamlessM4Tv2SpeechEncoder
41
+ from .configuration_qwen2_mm import Qwen2MMConfig
42
+ from torch.nn import CrossEntropyLoss, LayerNorm
43
+
44
+ if is_flash_attn_2_available():
45
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
46
+
47
+
48
+ logger = logging.get_logger(__name__)
49
+
50
+ _CONFIG_FOR_DOC = "Qwen2MMConfig"
51
+
52
+
53
+
54
+ class Qwen2AudioMultiModalProjector(nn.Module):
55
+ def __init__(self, config: Qwen2MMConfig):
56
+ super().__init__()
57
+ self.linear = nn.Linear(config.audio_config.hidden_size, config.hidden_size, bias=True)
58
+
59
+ def forward(self, audio_features):
60
+ hidden_states = self.linear(audio_features)
61
+ return hidden_states
62
+
63
+
64
+ class Qwen2MMPreTrainedModel(PreTrainedModel):
65
+ config_class = Qwen2MMConfig
66
+ base_model_prefix = "model"
67
+ supports_gradient_checkpointing = True
68
+ _supports_flash_attn_2 = True
69
+ _supports_sdpa = True
70
+
71
+
72
+
73
+ class Qwen2MMForConditionalGeneration(Qwen2MMPreTrainedModel, GenerationMixin):
74
+
75
+ def __init__(self, config):
76
+ super().__init__(config)
77
+ #self.audio_tower = SeamlessM4Tv2Model.from_pretrained("/mnt/diskhd/Backup/DownloadModel/seamless-m4t-v2-large/").speech_encoder
78
+ self.audio_tower = SeamlessM4Tv2SpeechEncoder(config.audio_config)
79
+
80
+ self.audio_projector = Qwen2AudioMultiModalProjector(config)
81
+
82
+ self.vocab_size = config.vocab_size
83
+ '''
84
+ tmp = AutoModelForCausalLM.from_pretrained("/mnt/diskhd/Backup/DownloadModel/Qwen2.5-7B-Instruct/")
85
+ self.language_model = tmp.model
86
+ self.lm_head = tmp.lm_head
87
+ '''
88
+
89
+ #self.language_model = AutoModelForCausalLM.from_pretrained("/mnt/diskhd/Backup/DownloadModel/Qwen2.5-7B-Instruct/")#.to("cuda")
90
+ #self.language_model = Qwen2ForCausalLM(config)
91
+
92
+
93
+ self.language_model = Qwen2Model(config)
94
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
95
+
96
+
97
+ self.padding_side = "left"
98
+
99
+
100
+ # Initialize weights and apply final processing
101
+ self.post_init()
102
+
103
+
104
+ # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings
105
+ def get_input_embeddings(self):
106
+ return self.language_model.get_input_embeddings()
107
+
108
+ # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings
109
+ def set_input_embeddings(self, value):
110
+ self.language_model.set_input_embeddings(value)
111
+
112
+ # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings
113
+ def get_output_embeddings(self):
114
+ return self.language_model.get_output_embeddings()
115
+
116
+ # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings
117
+ def set_output_embeddings(self, new_embeddings):
118
+ self.language_model.set_output_embeddings(new_embeddings)
119
+ '''
120
+
121
+
122
+ def get_input_embeddings(self):
123
+ return self.language_model.embed_tokens
124
+
125
+ def set_input_embeddings(self, value):
126
+ self.language_model.embed_tokens = value
127
+
128
+ def get_output_embeddings(self):
129
+ return self.lm_head
130
+
131
+ def set_output_embeddings(self, new_embeddings):
132
+ self.lm_head = new_embeddings
133
+
134
+ def set_decoder(self, decoder):
135
+ self.language_model = decoder
136
+
137
+ def get_decoder(self):
138
+ return self.language_model
139
+
140
+ '''
141
+
142
+ def _update_model_kwargs_for_generation(
143
+ self,
144
+ outputs: ModelOutput,
145
+ model_kwargs: Dict[str, Any],
146
+ is_encoder_decoder: bool = False,
147
+ num_new_tokens: int = 1,
148
+ ) -> Dict[str, Any]:
149
+ model_kwargs = super()._update_model_kwargs_for_generation(
150
+ outputs=outputs,
151
+ model_kwargs=model_kwargs,
152
+ is_encoder_decoder=is_encoder_decoder,
153
+ num_new_tokens=num_new_tokens,
154
+ )
155
+
156
+ if getattr(outputs, "rope_deltas", None) is not None:
157
+ model_kwargs["rope_deltas"] = outputs.rope_deltas
158
+
159
+ return model_kwargs
160
+
161
+
162
+ def forward(
163
+ self,
164
+ input_ids: torch.LongTensor = None,
165
+ attention_mask: Optional[torch.Tensor] = None,
166
+ position_ids: Optional[torch.LongTensor] = None,
167
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
168
+ inputs_embeds: Optional[torch.FloatTensor] = None,
169
+ labels: Optional[torch.LongTensor] = None,
170
+ use_cache: Optional[bool] = None,
171
+ output_attentions: Optional[bool] = None,
172
+ output_hidden_states: Optional[bool] = None,
173
+ return_dict: Optional[bool] = None,
174
+ pixel_values: Optional[torch.Tensor] = None,
175
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
176
+ audio_values: Optional[torch.Tensor] = None,
177
+ image_grid_thw: Optional[torch.LongTensor] = None,
178
+ video_grid_thw: Optional[torch.LongTensor] = None,
179
+ audio_grid_thw: Optional[torch.LongTensor] = None,
180
+ audio_attention_mask: Optional[torch.LongTensor] = None,
181
+ rope_deltas: Optional[torch.LongTensor] = None,
182
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
183
+ r"""
184
+ Args:
185
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
186
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
187
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
188
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
189
+
190
+ Returns:
191
+
192
+ Example:
193
+
194
+ ```python
195
+ >>> from PIL import Image
196
+ >>> import requests
197
+ >>> from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
198
+
199
+ >>> model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
200
+ >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
201
+
202
+ >>> messages = [
203
+ {
204
+ "role": "user",
205
+ "content": [
206
+ {"type": "image"},
207
+ {"type": "text", "text": "What is shown in this image?"},
208
+ ],
209
+ },
210
+ ]
211
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
212
+ >>> image = Image.open(requests.get(url, stream=True).raw)
213
+
214
+ >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
215
+ >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
216
+
217
+ >>> # Generate
218
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
219
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
220
+ "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
221
+ ```"""
222
+
223
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
224
+ output_hidden_states = (
225
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
226
+ )
227
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
228
+
229
+ if inputs_embeds is None:
230
+ inputs_embeds = self.language_model.embed_tokens(input_ids)
231
+ if audio_values is not None:
232
+ audio_values = audio_values.type(self.audio_tower.dtype)
233
+ audio_embeds = self.audio_tower(input_features = audio_values, attention_mask = audio_attention_mask).last_hidden_state
234
+ audio_embeds = self.audio_projector(audio_embeds)
235
+ #print("audio_embeds: ", [audio_embeds.shape, audio_grid_thw])
236
+
237
+ tmp = []
238
+ for audio_embed, audio_token_num in zip(audio_embeds, audio_grid_thw):
239
+ #print(audio_token_num)
240
+ tmp.append(audio_embed[:audio_token_num, :])
241
+ audio_embeds = torch.cat(tmp)
242
+
243
+
244
+ n_audio_tokens = (input_ids == self.config.audio_token_id).sum().item()
245
+ n_audio_features = audio_embeds.shape[0]
246
+ if n_audio_tokens != n_audio_features:
247
+ print(
248
+ f"Audio features and audio tokens do not match: tokens: {n_audio_tokens}, features {n_audio_features}"
249
+ )
250
+ audio_mask = (
251
+ (input_ids == self.config.audio_token_id)
252
+ .unsqueeze(-1)
253
+ .expand_as(inputs_embeds)
254
+ .to(inputs_embeds.device)
255
+ )
256
+ audio_embeds = audio_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
257
+ inputs_embeds = inputs_embeds.masked_scatter(audio_mask, audio_embeds)
258
+
259
+
260
+ if attention_mask is not None:
261
+ attention_mask = attention_mask.to(inputs_embeds.device)
262
+
263
+ outputs = self.language_model(
264
+ attention_mask=attention_mask,
265
+ position_ids=position_ids,
266
+ past_key_values=past_key_values,
267
+ inputs_embeds=inputs_embeds,
268
+ use_cache=use_cache,
269
+ output_attentions=output_attentions,
270
+ output_hidden_states=output_hidden_states,
271
+ return_dict=return_dict,
272
+ )
273
+ #for name, param in self.language_model.named_parameters():
274
+ # print(f"Parameter name: {name}", f"Parameter shape: {param.shape} {param.dtype}")
275
+
276
+
277
+ hidden_states = outputs[0]
278
+ logits = self.lm_head(hidden_states)
279
+ #print("logits:", logits.shape)
280
+
281
+
282
+ loss = None
283
+ if labels is not None:
284
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
285
+ logits = logits.float()
286
+ # Shift so that tokens < n predict n
287
+ shift_logits = logits[..., :-1, :].contiguous()
288
+ shift_labels = labels[..., 1:].contiguous()
289
+ # Flatten the tokens
290
+ loss_fct = CrossEntropyLoss()
291
+ #print("shift_logits: ", shift_logits)
292
+ #print("shift_labels: ", shift_labels)
293
+
294
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
295
+ shift_labels = shift_labels.view(-1)
296
+ # Enable model parallelism
297
+ shift_labels = shift_labels.to(shift_logits.device)
298
+ loss = loss_fct(shift_logits, shift_labels)
299
+
300
+ if not return_dict:
301
+ output = (logits,) + outputs[1:]
302
+ return (loss,) + output if loss is not None else output
303
+
304
+ return CausalLMOutputWithPast(
305
+ loss=loss,
306
+ logits=logits,
307
+ past_key_values=outputs.past_key_values,
308
+ hidden_states=outputs.hidden_states,
309
+ attentions=outputs.attentions,
310
+ )
311
+
312
+
313
+
314
+ def prepare_inputs_for_generation(
315
+ self,
316
+ input_ids,
317
+ past_key_values=None,
318
+ attention_mask=None,
319
+ inputs_embeds=None,
320
+ cache_position=None,
321
+ position_ids=None,
322
+ use_cache=True,
323
+ pixel_values=None,
324
+ pixel_values_videos=None,
325
+ audio_values=None,
326
+ image_grid_thw=None,
327
+ video_grid_thw=None,
328
+ audio_grid_thw=None,
329
+ audio_attention_mask=None,
330
+ **kwargs,
331
+ ):
332
+ # Overwritten -- in specific circumstances we don't want to forward image inputs to the model
333
+
334
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
335
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
336
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
337
+ if past_key_values is not None:
338
+ if inputs_embeds is not None: # Exception 1
339
+ input_ids = input_ids[:, -cache_position.shape[0] :]
340
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
341
+ input_ids = input_ids[:, cache_position]
342
+
343
+
344
+ if cache_position[0] != 0:
345
+ pixel_values = None
346
+ pixel_values_videos = None
347
+ audio_values = None
348
+
349
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
350
+ if inputs_embeds is not None and cache_position[0] == 0:
351
+ model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
352
+ else:
353
+ model_inputs = {"input_ids": input_ids, "inputs_embeds": None}
354
+
355
+
356
+ model_inputs.update(
357
+ {
358
+ "position_ids": position_ids,
359
+ "past_key_values": past_key_values,
360
+ "use_cache": use_cache,
361
+ "attention_mask": attention_mask,
362
+ "pixel_values": pixel_values,
363
+ "pixel_values_videos": pixel_values_videos,
364
+ "audio_values": audio_values,
365
+ "image_grid_thw": image_grid_thw,
366
+ "video_grid_thw": video_grid_thw,
367
+ "audio_grid_thw": audio_grid_thw,
368
+ }
369
+ )
370
+ #print("model_inputs: ", model_inputs)
371
+ return model_inputs
preprocessor_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "audio_processor_type": "SeamlessM4TFeatureExtractor",
3
+ "auto_map": {
4
+ "AutoProcessor": "processing_qwen2_mm.Qwen2MMProcessor"
5
+ },
6
+ "do_convert_rgb": true,
7
+ "do_normalize": true,
8
+ "do_rescale": true,
9
+ "do_resize": true,
10
+ "feature_size": 80,
11
+ "image_mean": [
12
+ 0.48145466,
13
+ 0.4578275,
14
+ 0.40821073
15
+ ],
16
+ "image_processor_type": "Qwen2VLImageProcessor",
17
+ "image_std": [
18
+ 0.26862954,
19
+ 0.26130258,
20
+ 0.27577711
21
+ ],
22
+ "max_pixels": 12845056,
23
+ "merge_size": 2,
24
+ "min_pixels": 3136,
25
+ "num_mel_bins": 80,
26
+ "padding_side": "right",
27
+ "padding_value": 0.0,
28
+ "patch_size": 14,
29
+ "processor_class": "Qwen2MMProcessor",
30
+ "resample": 3,
31
+ "rescale_factor": 0.00392156862745098,
32
+ "return_attention_mask": true,
33
+ "sampling_rate": 16000,
34
+ "size": {
35
+ "max_pixels": 12845056,
36
+ "min_pixels": 3136
37
+ },
38
+ "stride": 2,
39
+ "temporal_patch_size": 2
40
+ }
processing_qwen2_mm.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """
21
+ Processor class for Qwen2-VL.
22
+ """
23
+
24
+ from typing import List, Union
25
+
26
+ from transformers.image_processing_utils import BatchFeature
27
+ from transformers.image_utils import ImageInput, VideoInput
28
+ from transformers.processing_utils import ProcessorMixin, ProcessingKwargs, Unpack
29
+ from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy, AudioInput
30
+ from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device, logging
31
+
32
+ import torch
33
+ logger = logging.get_logger(__name__)
34
+
35
+
36
+ class Qwen2VLProcessorKwargs(ProcessingKwargs, total=False):
37
+ _defaults = {
38
+ "text_kwargs": {
39
+ "padding": False,
40
+ },
41
+ }
42
+
43
+
44
+ class Qwen2MMProcessor(ProcessorMixin):
45
+ r"""
46
+ Constructs a Qwen2-VL processor which wraps a Qwen2-VL image processor and a Qwen2 tokenizer into a single processor.
47
+ [`Qwen2VLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
48
+ [`~Qwen2VLProcessor.__call__`] and [`~Qwen2VLProcessor.decode`] for more information.
49
+ Args:
50
+ image_processor ([`Qwen2VLImageProcessor`], *optional*):
51
+ The image processor is a required input.
52
+ tokenizer ([`Qwen2TokenizerFast`], *optional*):
53
+ The tokenizer is a required input.
54
+ chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
55
+ in a chat into a tokenizable string.
56
+ """
57
+
58
+ attributes = ["image_processor", "tokenizer", "audio_processor"]
59
+ valid_kwargs = ["chat_template"]
60
+ image_processor_class = "Qwen2VLImageProcessor"
61
+ audio_processor_class = "SeamlessM4TFeatureExtractor"
62
+ tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
63
+
64
+ def __init__(self, image_processor=None, tokenizer=None, audio_processor=None, chat_template=None, **kwargs):
65
+ super().__init__(image_processor, tokenizer, audio_processor, chat_template=chat_template)
66
+ #print("image_processor: ", image_processor)
67
+ #print("audio_processor: ", audio_processor)
68
+
69
+
70
+ def __call__(
71
+ self,
72
+ images: ImageInput = None,
73
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
74
+ videos: VideoInput = None,
75
+ audios: AudioInput = None,
76
+ **kwargs: Unpack[Qwen2VLProcessorKwargs],
77
+ ) -> BatchFeature:
78
+ """
79
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
80
+ and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
81
+ the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
82
+ Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
83
+
84
+ Args:
85
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
86
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
87
+ tensor. Both channels-first and channels-last formats are supported.
88
+ text (`str`, `List[str]`, `List[List[str]]`):
89
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
90
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
91
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
92
+ videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
93
+ The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
94
+ tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
95
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
96
+ If set, will return tensors of a particular framework. Acceptable values are:
97
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
98
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
99
+ - `'np'`: Return NumPy `np.ndarray` objects.
100
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
101
+
102
+ Returns:
103
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
104
+
105
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
106
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
107
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
108
+ `None`).
109
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
110
+ - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
111
+ - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
112
+ - **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
113
+ """
114
+ output_kwargs = self._merge_kwargs(
115
+ Qwen2VLProcessorKwargs,
116
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
117
+ **kwargs,
118
+ )
119
+ if images is not None:
120
+ image_inputs = self.image_processor(images=images, videos=None, **output_kwargs["images_kwargs"])
121
+ image_grid_thw = image_inputs["image_grid_thw"]
122
+ else:
123
+ image_inputs = {}
124
+ image_grid_thw = None
125
+
126
+ if videos is not None:
127
+ videos_inputs = self.image_processor(images=None, videos=videos, **output_kwargs["videos_kwargs"])
128
+ video_grid_thw = videos_inputs["video_grid_thw"]
129
+ else:
130
+ videos_inputs = {}
131
+ video_grid_thw = None
132
+
133
+ if audios is not None:
134
+ print("audios: ", audios)
135
+ audio_inputs = self.audio_processor(audios, sampling_rate=16000, return_tensors="pt")
136
+ audio_grid_thw = torch.tensor([torch.sum(attention_mask == 1).item() // 8 + 1 for attention_mask in audio_inputs["attention_mask"]])
137
+ audio_inputs = {"audio_values": audio_inputs["input_features"], "audio_attention_mask": audio_inputs["attention_mask"], "audio_grid_thw": audio_grid_thw}
138
+
139
+ else:
140
+ audio_inputs = {}
141
+ audio_grid_thw = None
142
+
143
+ if not isinstance(text, list):
144
+ text = [text]
145
+
146
+ if image_grid_thw is not None:
147
+ merge_length = self.image_processor.merge_size**2
148
+ index = 0
149
+ for i in range(len(text)):
150
+ while "<|image_pad|>" in text[i]:
151
+ text[i] = text[i].replace(
152
+ "<|image_pad|>", "<|placeholder|>" * (image_grid_thw[index].prod() // merge_length), 1
153
+ )
154
+ index += 1
155
+ text[i] = text[i].replace("<|placeholder|>", "<|image_pad|>")
156
+
157
+ if video_grid_thw is not None:
158
+ merge_length = self.image_processor.merge_size**2
159
+ index = 0
160
+ for i in range(len(text)):
161
+ while "<|video_pad|>" in text[i]:
162
+ text[i] = text[i].replace(
163
+ "<|video_pad|>", "<|placeholder|>" * (video_grid_thw[index].prod() // merge_length), 1
164
+ )
165
+ index += 1
166
+ text[i] = text[i].replace("<|placeholder|>", "<|video_pad|>")
167
+
168
+ if audio_grid_thw is not None:
169
+ index = 0
170
+ for i in range(len(text)):
171
+ while "<|audio_pad|>" in text[i]:
172
+ text[i] = text[i].replace(
173
+ "<|audio_pad|>", "<|placeholder|>" * audio_grid_thw[index], 1
174
+ )
175
+ index += 1
176
+ text[i] = text[i].replace("<|placeholder|>", "<|audio_pad|>")
177
+
178
+
179
+ text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
180
+
181
+ return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs, **audio_inputs})
182
+
183
+ def batch_decode(self, *args, **kwargs):
184
+ """
185
+ This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
186
+ refer to the docstring of this method for more information.
187
+ """
188
+ return self.tokenizer.batch_decode(*args, **kwargs)
189
+
190
+ def decode(self, *args, **kwargs):
191
+ """
192
+ This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
193
+ the docstring of this method for more information.
194
+ """
195
+ return self.tokenizer.decode(*args, **kwargs)
196
+
197
+ @property
198
+ def model_input_names(self):
199
+ tokenizer_input_names = self.tokenizer.model_input_names
200
+ image_processor_input_names = self.image_processor.model_input_names
201
+ audio_processor_input_names = self.audio_processor.model_input_names
202
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>",
16
+ "<|audio_pad|>",
17
+ "<|audio_start|>",
18
+ "<|audio_end|>"
19
+ ],
20
+ "eos_token": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "pad_token": {
28
+ "content": "<|endoftext|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26be3e5cc56af49a7e8179660a697ed62eb8808cdc8f086faa3c6e91037cb37b
3
+ size 11422468
tokenizer_config.json ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<|audio_pad|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "151666": {
190
+ "content": "<|audio_start|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "151667": {
198
+ "content": "<|audio_end|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ }
205
+ },
206
+ "additional_special_tokens": [
207
+ "<|im_start|>",
208
+ "<|im_end|>",
209
+ "<|object_ref_start|>",
210
+ "<|object_ref_end|>",
211
+ "<|box_start|>",
212
+ "<|box_end|>",
213
+ "<|quad_start|>",
214
+ "<|quad_end|>",
215
+ "<|vision_start|>",
216
+ "<|vision_end|>",
217
+ "<|vision_pad|>",
218
+ "<|image_pad|>",
219
+ "<|video_pad|>",
220
+ "<|audio_pad|>",
221
+ "<|audio_start|>",
222
+ "<|audio_end|>"
223
+ ],
224
+ "bos_token": null,
225
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
226
+ "clean_up_tokenization_spaces": false,
227
+ "eos_token": "<|im_end|>",
228
+ "errors": "replace",
229
+ "model_max_length": 131072,
230
+ "pad_token": "<|endoftext|>",
231
+ "padding_side": "right",
232
+ "split_special_tokens": false,
233
+ "tokenizer_class": "Qwen2Tokenizer",
234
+ "unk_token": null
235
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38fed174c068c00c7bc9a0279312ca2eaa70226fb1aa27ec7e01ad0e7102f2e9
3
+ size 6520
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)