File size: 41,175 Bytes
b847d03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 |
---
tags:
- fp8
- vllm
---
# Phi-3-mini-128k-instruct-FP8
## Model Overview
* <h3 style="display: inline;">Model Architecture:</h3> Based on and identical to the Phi-3-mini-128k-instruct-FP8 architecture
* <h3 style="display: inline;">Model Optimizations:</h3> Weights and activations quantized to FP8
* <h3 style="display: inline;">Release Date:</h3> June 29, 2024
* <h3 style="display: inline;">Model Developers:</h3> Neural Magic
Phi-3-mini-128k-instruct-FP8 quantized to FP8 weights and activations using per-tensor quantization through the [AutoFP8 repository](https://github.com/neuralmagic/AutoFP8), ready for inference with vLLM >= 0.5.0.
Calibrated with 10 repeats of each token in the tokenizer in random order to achieve 99% performance recovery on the Open LLM Benchmark evaluations.
Reduces space on disk by ~50%.
Part of the [FP8 LLMs for vLLM collection](https://huggingface.co/collections/neuralmagic/fp8-llms-for-vllm-666742ed2b78b7ac8df13127).
## Usage and Creation
Produced using AutoFP8 with random tokens as calibration, based on [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py).
```python
from datasets import load_dataset
from transformers import AutoTokenizer
import numpy as np
import torch
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
MODEL_DIR = "microsoft/Phi-3-mini-128k-instruct"
final_model_dir = MODEL_DIR.split("/")[-1]
CONTEXT_LENGTH = 4096
NUM_SAMPLES = 512
NUM_REPEATS = 10
pretrained_model_dir = MODEL_DIR
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=CONTEXT_LENGTH)
tokenizer.pad_token = tokenizer.eos_token
tokenizer_num_tokens = len(list(tokenizer.get_vocab().values()))
total_token_samples = NUM_REPEATS * tokenizer_num_tokens
num_random_samp = -(-total_token_samples // CONTEXT_LENGTH)
input_ids = np.tile(np.arange(tokenizer_num_tokens), NUM_REPEATS + 1)[:num_random_samp * CONTEXT_LENGTH]
np.random.shuffle(input_ids)
input_ids = input_ids.reshape(num_random_samp, CONTEXT_LENGTH)
input_ids = torch.tensor(input_ids, dtype=torch.int64).to("cuda")
quantize_config = BaseQuantizeConfig(
quant_method="fp8",
activation_scheme="static",
)
examples = input_ids
model = AutoFP8ForCausalLM.from_pretrained(pretrained_model_dir, quantize_config=quantize_config)
model.quantize(examples)
quantized_model_dir = f"{final_model_dir}-FP8"
model.save_quantized(quantized_model_dir)
```
Evaluated through a modified version of vLLM with the following script:
```
#!/bin/bash
# Example usage:
# CUDA_VISIBLE_DEVICES=0 ./eval_openllm.sh "neuralmagic/Llama-2-7b-chat-hf-FP8" "tensor_parallel_size=1,max_model_len=4096,add_bos_token=True,gpu_memory_utilization=0.7"
export MODEL_DIR=${1}
export MODEL_ARGS=${2}
declare -A tasks_fewshot=(
["arc_challenge"]=25
["winogrande"]=5
["truthfulqa_mc2"]=0
["hellaswag"]=10
["mmlu"]=5
["gsm8k"]=5
)
declare -A batch_sizes=(
["arc_challenge"]="auto"
["winogrande"]="auto"
["truthfulqa_mc2"]="auto"
["hellaswag"]="auto"
["mmlu"]=1
["gsm8k"]="auto"
)
for TASK in "${!tasks_fewshot[@]}"; do
NUM_FEWSHOT=${tasks_fewshot[$TASK]}
BATCH_SIZE=${batch_sizes[$TASK]}
lm_eval --model vllm \
--model_args pretrained=$MODEL_DIR,$MODEL_ARGS \
--tasks ${TASK} \
--num_fewshot ${NUM_FEWSHOT} \
--write_out \
--show_config \
--device cuda \
--batch_size ${BATCH_SIZE} \
--output_path="results/${TASK}"
done
```
In vllm=0.5.0, Phi-3 models are not fully supported, and running the above script will yield an AssertionError. However, replacing the file that throws an error with the file below will fix the issue.
```
from abc import abstractmethod
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from vllm.distributed import (divide, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
split_tensor_along_last_dim,
tensor_model_parallel_all_gather,
tensor_model_parallel_all_reduce)
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.utils import set_weight_attrs
logger = init_logger(__name__)
def adjust_marlin_shard(param, shard_size, shard_offset):
marlin_tile_size = getattr(param, "marlin_tile_size", None)
if marlin_tile_size is None:
return shard_size, shard_offset
return shard_size * marlin_tile_size, shard_offset * marlin_tile_size
def adjust_bitsandbytes_shard(param: Parameter,
qkv_offsets: Dict[str, Tuple[int, int]],
loaded_shard_id: str) -> Tuple[int, int]:
"""Adjust the quantization offsets and sizes for BitsAndBytes sharding."""
total, _ = qkv_offsets["total"]
orig_offset, orig_size = qkv_offsets[loaded_shard_id]
quantized_total = param.data.shape[0]
quantized_offset = orig_offset * quantized_total // total
quantized_size = orig_size * quantized_total // total
return quantized_size, quantized_offset
class LinearMethodBase(QuantizeMethodBase):
"""Base class for different (maybe quantized) linear methods."""
@abstractmethod
def create_weights(self, layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int], input_size: int,
output_size: int, params_dtype: torch.dtype,
**extra_weight_attrs):
"""Create weights for a linear layer.
The weights will be set as attributes of the layer.
Args:
layer: The layer that is using the LinearMethodBase factory.
input_size_per_partition: Size of the weight input dim on rank X.
output_partition_sizes: Sizes of the output dim of each logical
weight on rank X. E.g., output_partition_sizes for QKVLinear
is a list contains the width of Wq, Wk, Wv on rank X.
input_size: Size of the input dim of the weight across all ranks.
output_size: Size of the output dim of the weight across all ranks.
params_dtype: Datatype of the parameters.
"""
raise NotImplementedError
@abstractmethod
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Apply the weights in layer to the input tensor.
Expects create_weights to have been called before on the layer."""
raise NotImplementedError
class UnquantizedLinearMethod(LinearMethodBase):
"""Linear method without quantization.
Args:
separate_bias_add: If true, add bias separately after matrix
multiplication.
"""
def __init__(self, separate_bias_add: bool = False):
self.separate_bias_add = separate_bias_add
def create_weights(self, layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int], input_size: int,
output_size: int, params_dtype: torch.dtype,
**extra_weight_attrs):
weight = Parameter(torch.empty(sum(output_partition_sizes),
input_size_per_partition,
dtype=params_dtype),
requires_grad=False)
set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
layer.register_parameter("weight", weight)
set_weight_attrs(weight, extra_weight_attrs)
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
weight = layer.weight
if self.separate_bias_add:
if bias is not None:
return F.linear(x, weight) + bias
return F.linear(x, weight)
return F.linear(x, weight, bias)
class LinearBase(torch.nn.Module):
"""Base linear layer.
Args:
input_size: input dimension of the linear layer.
output_size: output dimension of the linear layer.
bias: If true, add bias.
skip_bias_add: If true, skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configure.
"""
def __init__(
self,
input_size: int,
output_size: int,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
# Keep input parameters
self.input_size = input_size
self.output_size = output_size
self.skip_bias_add = skip_bias_add
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
if quant_config is None:
self.quant_method: Optional[
QuantizeMethodBase] = UnquantizedLinearMethod()
else:
self.quant_method = quant_config.get_quant_method(self)
def forward(self, x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
class ReplicatedLinear(LinearBase):
"""Replicated linear layer.
Args:
input_size: input dimension of the linear layer.
output_size: output dimension of the linear layer.
bias: If true, add bias.
skip_bias_add: If true, skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configure.
"""
def __init__(self,
input_size: int,
output_size: int,
bias: bool = True,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None):
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
quant_config)
# All the linear layer supports quant method.
assert self.quant_method is not None
self.quant_method.create_weights(self, self.input_size,
[self.output_size], self.input_size,
self.output_size, self.params_dtype)
if bias:
self.bias = Parameter(
torch.empty(self.output_size, dtype=self.params_dtype))
set_weight_attrs(self.bias, {"output_dim": 0})
else:
self.register_parameter("bias", None)
def forward(self, x: torch.Tensor) -> torch.Tensor:
bias = self.bias if not self.skip_bias_add else None
assert self.quant_method is not None
output = self.quant_method.apply(self, x, bias)
output_bias = self.bias if self.skip_bias_add else None
return output, output_bias
def extra_repr(self) -> str:
s = f"in_features={self.input_size}"
s += f", output_features={self.output_size}"
s += f", bias={self.bias is not None}"
return s
class ColumnParallelLinear(LinearBase):
"""Linear layer with column parallelism.
The linear layer is defined as Y = XA + b. A is parallelized along
its second dimension as A = [A_1, ..., A_p].
Args:
input_size: first dimension of matrix A.
output_size: second dimension of matrix A.
bias: If true, add bias.
gather_output: If true, call all-gather on output and make Y available
to all GPUs, otherwise, every GPU will have its output
which is Y_i = XA_i
skip_bias_add: This was added to enable performance optimizations where
bias can be fused with other element-wise operations. we
skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configure.
output_sizes: list of output sizes packed into one output, like for QKV
the list would be size 3.
"""
def __init__(self,
input_size: int,
output_size: int,
bias: bool = True,
gather_output: bool = False,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
output_sizes: Optional[List[int]] = None):
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
quant_config)
self.gather_output = gather_output
# Divide the weight matrix along the last dimension.
tp_size = get_tensor_model_parallel_world_size()
assert self.quant_method is not None
self.output_size_per_partition = divide(self.output_size, tp_size)
self.output_partition_sizes = [self.output_size_per_partition]
# If QKV or MergedColumn, use output size of each partition.
if hasattr(self, "output_sizes"):
self.output_partition_sizes = [
divide(output_size, tp_size)
for output_size in self.output_sizes
]
if output_sizes is None:
output_sizes = [output_size]
self.quant_method.create_weights(
layer=self,
input_size_per_partition=self.input_size,
output_partition_sizes=self.output_partition_sizes,
input_size=self.input_size,
output_size=self.output_size,
params_dtype=self.params_dtype,
weight_loader=self.weight_loader)
if bias:
self.bias = Parameter(
torch.empty(self.output_size_per_partition,
dtype=params_dtype))
set_weight_attrs(self.bias, {
"output_dim": 0,
"weight_loader": self.weight_loader,
})
else:
self.register_parameter("bias", None)
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
# Special case for Fp8 scales.
fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer",
None)
tp_rank = get_tensor_model_parallel_rank()
output_dim = getattr(param, "output_dim", None)
param_data = param.data
if output_dim is not None:
shard_size = param_data.shape[output_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
# Special case for Fp8 scales.
elif fp8_scales_shard_indexer is not None:
param_data, loaded_weight = fp8_scales_shard_indexer(param_data,
loaded_weight,
shard_id=0)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
def forward(self, input_):
bias = self.bias if not self.skip_bias_add else None
# Matrix multiply.
assert self.quant_method is not None
output_parallel = self.quant_method.apply(self, input_, bias)
if self.gather_output:
# All-gather across the partitions.
output = tensor_model_parallel_all_gather(output_parallel)
else:
output = output_parallel
output_bias = self.bias if self.skip_bias_add else None
return output, output_bias
def extra_repr(self) -> str:
s = f"in_features={self.input_size}"
s += f", output_features={self.output_size_per_partition}"
s += f", bias={self.bias is not None}"
s += f", tp_size={get_tensor_model_parallel_world_size()}"
s += f", gather_output={self.gather_output}"
return s
class MergedColumnParallelLinear(ColumnParallelLinear):
"""Packed linear layers with column parallelism.
Similar to ColumnParallelLinear, but the weight matrix is concatenated
along the output dimension. When the weight matrix is loaded, the
different partitions are sharded separately.
Args:
input_size: input dimension of the linear layer.
output_sizes: list of output dimensions of the linear layer.
bias: If true, add bias.
gather_output: If true, call all-gather on output and make the output
available to all GPUs, otherwise, every GPU will have
its own output.
skip_bias_add: This was added to enable performance optimizations where
bias can be fused with other element-wise operations. we
skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configure.
"""
def __init__(self,
input_size: int,
output_sizes: List[int],
bias: bool = True,
gather_output: bool = False,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None):
self.output_sizes = output_sizes
tp_size = get_tensor_model_parallel_world_size()
assert all(output_size % tp_size == 0 for output_size in output_sizes)
super().__init__(input_size=input_size,
output_size=sum(output_sizes),
bias=bias,
gather_output=gather_output,
skip_bias_add=skip_bias_add,
params_dtype=params_dtype,
quant_config=quant_config)
def weight_loader(self,
param: Parameter,
loaded_weight: torch.Tensor,
loaded_shard_id: Optional[int] = None):
param_data = param.data
output_dim = getattr(param, "output_dim", None)
# Special case for AQLM codebooks.
is_metadata = getattr(param, "is_metadata", False)
param_shard_splitter = getattr(param, "shard_splitter", None)
if output_dim is not None and param_shard_splitter is not None:
raise NotImplementedError(
"We do not currently support output_dim != None and "
"shard_splitter != None for a parameter. Please open an issue."
)
# If a parameter has defined a shard_splitter to be used for
# the weight, it should be applied before the weight is
# loaded/copied to the parameter. The shard_splitter applies
# logic by using the loaded_shard_id to ensure that the loaded
# param is loaded to the correct location
# within the parameter defined by the linear method.
if loaded_shard_id is None and param_shard_splitter is not None:
raise NotImplementedError(
"We do not currently support loaded_shard_id == None and "
"shard_splitter != None for a parameter. Please open an issue."
)
# Special case for Fp8 scales.
fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer",
None)
if loaded_shard_id is None:
# Loaded weight is already packed.
if output_dim is None:
temp = loaded_weight.repeat(param_data.shape)
assert param_data.shape == temp.shape
param_data.copy_(temp)
return
current_shard_offset = 0
shard_offsets = []
for i, output_size in enumerate(self.output_sizes):
shard_offsets.append((i, current_shard_offset, output_size))
current_shard_offset += output_size
packed_dim = getattr(param, "packed_dim", None)
for shard_id, shard_offset, shard_size in shard_offsets:
# Special case for Quantization.
# If quantized, we need to adjust the offset and size to account
# for the packing.
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
# Special case for Marlin.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
loaded_weight_shard = loaded_weight.narrow(
output_dim, shard_offset, shard_size)
self.weight_loader(param, loaded_weight_shard, shard_id)
return
assert loaded_shard_id < len(self.output_sizes)
tp_rank = get_tensor_model_parallel_rank()
tp_size = get_tensor_model_parallel_world_size()
if output_dim is not None:
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
shard_size = self.output_sizes[loaded_shard_id] // tp_size
# Special case for quantization.
# If quantized, we need to adjust the offset and size to account
# for the packing.
packed_dim = getattr(param, "packed_dim", None)
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
# Special case for Marlin.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
use_bitsandbytes = getattr(param, "use_bitsandbytes", False)
if use_bitsandbytes:
shard_size = loaded_weight.shape[output_dim]
shard_offset = loaded_weight.shape[output_dim] * \
loaded_shard_id
param_data = param_data.narrow(output_dim, shard_offset,
shard_size)
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
# Special case for AQLM codebooks.
elif is_metadata:
# metadata indicates fixed size concatenated along dim 0
shard_size = loaded_weight.shape[0]
shard_offset = loaded_shard_id * shard_size
param_data = param_data.narrow(0, shard_offset, shard_size)
# If a param_shard_splitter is defined by the LinearMethod, use it.
elif param_shard_splitter is not None:
logical_widths = getattr(param, "logical_widths", None)
param_data, loaded_weight = param_shard_splitter(
param_data, loaded_weight, loaded_shard_id, logical_widths)
# Special case for Fp8 scales.
elif fp8_scales_shard_indexer is not None:
param_data, loaded_weight = fp8_scales_shard_indexer(
param_data, loaded_weight, loaded_shard_id)
else:
ignore_warning = getattr(param, "ignore_warning", False)
if not ignore_warning:
logger.warning(
"Loading a weight without `output_dim` attribute in "
"MergedColumnParallelLinear, assume the weight is "
"the same for all partitions.")
if fp8_scales_shard_indexer is None:
if len(param_data.shape) == 0:
param_data = param_data.reshape(1)
if len(loaded_weight.shape) == 0:
loaded_weight = loaded_weight.reshape(1)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
class QKVParallelLinear(ColumnParallelLinear):
"""Linear layers for the attention's QKV transformation.
Linear layers for the linear transformation of the query, key, and value
vectors in the attention layer. The weight matrix is concatenated along
the output dimension. The layer is parallelized along the head dimension.
When the number of key/value heads is smaller than the number of query
heads (e.g., multi-query/grouped-query attention), the key/value head may
be replicated while the query heads are partitioned.
Args:
hidden_size: input hidden state size of the transformer.
head_size: size of each attention head.
total_num_heads: total number of attention query heads.
total_num_kv_heads: total number of attention key/value heads. If
None, assume total_num_kv_heads = total_num_heads.
bias: If true, add bias.
skip_bias_add: This was added to enable performance optimizations where
bias can be fused with other element-wise operations. we
skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configure.
"""
def __init__(self,
hidden_size: int,
head_size: int,
total_num_heads: int,
total_num_kv_heads: Optional[int] = None,
bias: bool = True,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None):
self.hidden_size = hidden_size
self.head_size = head_size
self.total_num_heads = total_num_heads
if total_num_kv_heads is None:
total_num_kv_heads = total_num_heads
self.total_num_kv_heads = total_num_kv_heads
# Divide the weight matrix along the last dimension.
tp_size = get_tensor_model_parallel_world_size()
self.num_heads = divide(self.total_num_heads, tp_size)
if tp_size >= self.total_num_kv_heads:
self.num_kv_heads = 1
self.num_kv_head_replicas = divide(tp_size,
self.total_num_kv_heads)
else:
self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
self.num_kv_head_replicas = 1
input_size = self.hidden_size
output_size = (self.num_heads +
2 * self.num_kv_heads) * tp_size * self.head_size
self.output_sizes = [
self.num_heads * self.head_size * tp_size, # q_proj
self.num_kv_heads * self.head_size * tp_size, # k_proj
self.num_kv_heads * self.head_size * tp_size, # v_proj
]
super().__init__(input_size=input_size,
output_size=output_size,
bias=bias,
gather_output=False,
skip_bias_add=skip_bias_add,
params_dtype=params_dtype,
quant_config=quant_config)
def weight_loader(self,
param: Parameter,
loaded_weight: torch.Tensor,
loaded_shard_id: Optional[str] = None):
param_data = param.data
output_dim = getattr(param, "output_dim", None)
# Special case for AQLM codebooks.
is_metadata = getattr(param, "is_metadata", False)
param_shard_splitter = getattr(param, "shard_splitter", None)
if output_dim is not None and param_shard_splitter is not None:
raise NotImplementedError(
"We do not currently support output_dim != None and "
"shard_splitter != None for a parameter. Please open an issue."
)
# If a parameter has defined a shard_splitter to be used for
# the weight, it should be applied before the weight is
# loaded/copied to the parameter. The shard_splitter applies
# logic by using the loaded_shard_id to ensure that the loaded
# param is loaded to the correct location
# within the parameter defined by the linear method.
if loaded_shard_id is None and param_shard_splitter is not None:
raise NotImplementedError(
"We do not currently support loaded_shard_id == None and "
"shard_splitter != None for a parameter. Please open an issue."
)
# Special case for Fp8 scales.
fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer",
None)
if loaded_shard_id is None:
# Loaded weight is already packed.
if output_dim is None:
temp = loaded_weight.repeat(param_data.shape)
assert param_data.shape == temp.shape
param_data.copy_(temp)
return
shard_offsets = [
# (shard_id, shard_offset, shard_size)
("q", 0, self.total_num_heads * self.head_size),
("k", self.total_num_heads * self.head_size,
self.total_num_kv_heads * self.head_size),
("v", (self.total_num_heads + self.total_num_kv_heads) *
self.head_size, self.total_num_kv_heads * self.head_size),
]
packed_dim = getattr(param, "packed_dim", None)
for shard_id, shard_offset, shard_size in shard_offsets:
# Special case for Quantized Weights.
# If quantized, we need to adjust the offset and size to account
# for the packing.
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
# Special case for Marlin.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
loaded_weight_shard = loaded_weight.narrow(
output_dim, shard_offset, shard_size)
self.weight_loader(param, loaded_weight_shard, shard_id)
return
tp_rank = get_tensor_model_parallel_rank()
assert loaded_shard_id in ["q", "k", "v"]
# If output dim is defined, use the default loading process.
if output_dim is not None:
if loaded_shard_id == "q":
shard_offset = 0
shard_size = self.num_heads * self.head_size
elif loaded_shard_id == "k":
shard_offset = self.num_heads * self.head_size
shard_size = self.num_kv_heads * self.head_size
elif loaded_shard_id == "v":
shard_offset = (self.num_heads +
self.num_kv_heads) * self.head_size
shard_size = self.num_kv_heads * self.head_size
# Special case for Quantized Weights.
# If quantized, we need to adjust the offset and size to account
# for the packing.
packed_dim = getattr(param, "packed_dim", None)
if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor
# Special case for Marlin.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
use_bitsandbytes = getattr(param, "use_bitsandbytes", False)
if use_bitsandbytes:
orig_qkv_offsets = {
"q": (0, self.num_heads * self.head_size),
"k": (self.num_heads * self.head_size,
self.num_kv_heads * self.head_size),
"v":
((self.num_heads + self.num_kv_heads) * self.head_size,
self.num_kv_heads * self.head_size),
"total":
((self.num_heads + 2 * self.num_kv_heads) * self.head_size,
0)
}
shard_size, shard_offset = adjust_bitsandbytes_shard(
param, orig_qkv_offsets, loaded_shard_id)
param_data = param_data.narrow(output_dim, shard_offset,
shard_size)
if loaded_shard_id == "q":
shard_id = tp_rank
else:
shard_id = tp_rank // self.num_kv_head_replicas
start_idx = shard_id * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
# Special case for for AQLM codebooks.
elif is_metadata:
# metadata indicates fixed size concatenated along dim 0
shard_size = loaded_weight.shape[0]
shard_index = ["q", "k", "v"].index(loaded_shard_id)
param_data = param_data.narrow(0, shard_index * shard_size,
shard_size)
# If a param_shard_splitter is defined by the LinearMethod, use it.
elif param_shard_splitter is not None:
logical_widths = getattr(param, "logical_widths", None)
param_data, loaded_weight = param_shard_splitter(
param_data, loaded_weight, loaded_shard_id, logical_widths)
# Special case for Fp8 scales.
elif fp8_scales_shard_indexer is not None:
param_data, loaded_weight = fp8_scales_shard_indexer(
param_data, loaded_weight, loaded_shard_id)
else:
ignore_warning = getattr(param, "ignore_warning", False)
if not ignore_warning:
logger.warning(
"Loading a weight without `output_dim` attribute in "
"QKVParallelLinear, assume the weight is the same "
"for all partitions.")
if len(param_data.shape) == 0:
param_data = param_data.reshape(1)
if len(loaded_weight.shape) == 0:
loaded_weight = loaded_weight.reshape(1)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
class RowParallelLinear(LinearBase):
"""Linear layer with row parallelism.
The linear layer is defined as Y = XA + b. A is parallelized along
its first dimension and X along its second dimension as:
- -
| A_1 |
| . |
A = | . | X = [X_1, ..., X_p]
| . |
| A_p |
- -
Arguments:
input_size: first dimension of matrix A.
output_size: second dimension of matrix A.
bias: If true, add bias. Note that bias is not parallelized.
input_is_parallel: If true, we assume that the input is already
split across the GPUs and we do not split
again.
skip_bias_add: This was added to enable performance optimization where
bias can be fused with other element-wise operations.
We skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configure.
"""
def __init__(self,
input_size: int,
output_size: int,
bias: bool = True,
input_is_parallel: bool = True,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
reduce_results: bool = True,
quant_config: Optional[QuantizationConfig] = None):
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
quant_config)
self.input_is_parallel = input_is_parallel
self.reduce_results = reduce_results
# Divide the weight matrix along the last dimension.
self.tp_size = get_tensor_model_parallel_world_size()
self.input_size_per_partition = divide(input_size, self.tp_size)
assert self.quant_method is not None
self.quant_method.create_weights(
layer=self,
input_size_per_partition=self.input_size_per_partition,
output_partition_sizes=[self.output_size],
input_size=self.input_size,
output_size=self.output_size,
params_dtype=self.params_dtype,
weight_loader=self.weight_loader)
if not reduce_results and (bias and not skip_bias_add):
raise ValueError("When not reduce the results, adding bias to the "
"results can lead to incorrect results")
if bias:
self.bias = Parameter(
torch.empty(self.output_size, dtype=params_dtype))
set_weight_attrs(self.bias, {
"output_dim": 0,
"weight_loader": self.weight_loader,
})
else:
self.register_parameter("bias", None)
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
# Special case for Fp8 scales.
fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer",
None)
tp_rank = get_tensor_model_parallel_rank()
input_dim = getattr(param, "input_dim", None)
param_data = param.data
if input_dim is not None:
shard_size = param_data.shape[input_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(input_dim, start_idx,
shard_size)
# Special case for Fp8 scales.
elif fp8_scales_shard_indexer is not None:
param_data, loaded_weight = fp8_scales_shard_indexer(param_data,
loaded_weight,
shard_id=0)
if fp8_scales_shard_indexer is None and len(loaded_weight.shape) == 0:
loaded_weight = loaded_weight.reshape(1)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
def forward(self, input_):
# Set up backprop all-reduce.
if self.input_is_parallel:
input_parallel = input_
else:
tp_rank = get_tensor_model_parallel_rank()
splitted_input = split_tensor_along_last_dim(
input_, num_partitions=self.tp_size)
input_parallel = splitted_input[tp_rank].contiguous()
# Matrix multiply.
assert self.quant_method is not None
output_parallel = self.quant_method.apply(self, input_parallel)
if self.reduce_results and self.tp_size > 1:
output_ = tensor_model_parallel_all_reduce(output_parallel)
else:
output_ = output_parallel
if not self.skip_bias_add:
output = output_ + self.bias if self.bias is not None else output_
output_bias = None
else:
output = output_
output_bias = self.bias
return output, output_bias
def extra_repr(self) -> str:
s = f"input_features={self.input_size_per_partition}"
s += f", output_features={self.output_size}"
s += f", bias={self.bias is not None}"
s += f", tp_size={self.tp_size}"
s += f", reduce_results={self.reduce_results}"
return s
```
## Evaluation
Evaluated on the Open LLM Leaderboard evaluations through vLLM.
### Open LLM Leaderboard evaluation scores
| | Phi-3-mini-128k-instruct-FP8 | neuralmagic/Phi-3-mini-128k-instruct-FP8<br>(this model) |
| :------------------: | :----------------------: | :------------------------------------------------: |
| arc-c<br>25-shot | 63.65 | 63.31 |
| hellaswag<br>10-shot | 79.76 | 79.44 |
| mmlu<br>5-shot | 68.10 | 68.08 |
| truthfulqa<br>0-shot | 53.97 | 53.76 |
| winogrande<br>5-shot | 73.72 | 72.45 |
| gsm8k<br>5-shot | 75.59 | 72.86 |
| **Average<br>Accuracy** | **69.13** | **68.32** |
| **Recovery** | **100%** | **98.82%** | |