--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: vllm base_model: - mistralai/Mistral-Small-3.1-24B-Instruct-2503 pipeline_tag: image-text-to-text tags: - neuralmagic - redhat - llmcompressor - quantized - int8 --- # Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8 ## Model Overview - **Model Architecture:** Mistral3ForConditionalGeneration - **Input:** Text / Image - **Output:** Text - **Model Optimizations:** - **Activation quantization:** INT8 - **Weight quantization:** INT8 - **Intended Use Cases:** It is ideal for: - Fast-response conversational agents. - Low-latency function calling. - Subject matter experts via fine-tuning. - Local inference for hobbyists and organizations handling sensitive data. - Programming and math reasoning. - Long document understanding. - Visual understanding. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages not officially supported by the model. - **Release Date:** 04/15/2025 - **Version:** 1.0 - **Model Developers:** Red Hat (Neural Magic) ### Model Optimizations This model was obtained by quantizing activations and weights of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503) to INT8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%. Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme. A combination of the [SmoothQuant](https://arxiv.org/abs/2211.10438) and [GPTQ](https://arxiv.org/abs/2210.17323) algorithms is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. ## Deployment This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoProcessor model_id = "RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic" number_gpus = 1 sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256) processor = AutoProcessor.from_pretrained(model_id) messages = [{"role": "user", "content": "Give me a short introduction to large language model."}] prompts = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) llm = LLM(model=model_id, tensor_parallel_size=number_gpus) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation
Creation details This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. ```python from transformers import AutoProcessor from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.modifiers.smoothquant import SmoothQuantModifier from llmcompressor.transformers import oneshot from llmcompressor.transformers.tracing import TraceableMistral3ForConditionalGeneration from datasets import load_dataset, interleave_datasets from PIL import Image import io # Load model model_stub = "mistralai/Mistral-Small-3.1-24B-Instruct-2503" model_name = model_stub.split("/")[-1] num_text_samples = 1024 num_vision_samples = 1024 max_seq_len = 8192 processor = AutoProcessor.from_pretrained(model_stub) model = TraceableMistral3ForConditionalGeneration.from_pretrained( model_stub, device_map="auto", torch_dtype="auto", ) # Text-only data subset def preprocess_text(example): input = { "text": processor.apply_chat_template( example["messages"], add_generation_prompt=False, ), "images": None, } tokenized_input = processor(**input, max_length=max_seq_len, truncation=True) tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None) tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None) return tokenized_input dst = load_dataset("neuralmagic/calibration", name="LLM", split="train").select(range(num_text_samples)) dst = dst.map(preprocess_text, remove_columns=dst.column_names) # Text + vision data subset def preprocess_vision(example): messages = [] image = None for message in example["messages"]: message_content = [] for content in message["content"]: if content["type"] == "text": message_content.append({"type": "text", "text": content["text"]}) else: message_content.append({"type": "image"}) image = Image.open(io.BytesIO(content["image"])) messages.append( { "role": message["role"], "content": message_content, } ) input = { "text": processor.apply_chat_template( messages, add_generation_prompt=False, ), "images": image, } tokenized_input = processor(**input, max_length=max_seq_len, truncation=True) tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None) tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None) return tokenized_input dsv = load_dataset("neuralmagic/calibration", name="VLM", split="train").select(range(num_vision_samples)) dsv = dsv.map(preprocess_vision, remove_columns=dsv.column_names) # Interleave subsets ds = interleave_datasets((dsv, dst)) # Configure the quantization algorithm and scheme recipe = [ SmoothQuantModifier( smoothing_strength=0.8, mappings=[ [["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"], [["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"], [["re:.*down_proj"], "re:.*up_proj"], ], ), GPTQModifier( ignore=["language_model.lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"], sequential_targets=["MistralDecoderLayer"], dampening_frac=0.01, targets="Linear", scheme="W8A8", ), ] # Define data collator def data_collator(batch): import torch assert len(batch) == 1 collated = {} for k, v in batch[0].items(): if v is None: continue if k == "input_ids": collated[k] = torch.LongTensor(v) elif k == "pixel_values": collated[k] = torch.tensor(v, dtype=torch.bfloat16) else: collated[k] = torch.tensor(v) return collated # Apply quantization oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, data_collator=data_collator, num_calibration_samples=num_text_samples + num_vision_samples, ) # Save to disk in compressed-tensors format save_path = model_name + "-quantized.w8a8" model.save_pretrained(save_path) processor.save_pretrained(save_path) print(f"Model and tokenizer saved to: {save_path}") ```
## Evaluation The model was evaluated on the OpenLLM leaderboard tasks (version 1), MMLU-pro, GPQA, HumanEval and MBPP. Non-coding tasks were evaluated with [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), whereas coding tasks were evaluated with a fork of [evalplus](https://github.com/neuralmagic/evalplus). [vLLM](https://docs.vllm.ai/en/stable/) is used as the engine in all cases.
Evaluation details **MMLU** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ --tasks mmlu \ --num_fewshot 5 \ --apply_chat_template\ --fewshot_as_multiturn \ --batch_size auto ``` **ARC Challenge** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ --tasks arc_challenge \ --num_fewshot 25 \ --apply_chat_template\ --fewshot_as_multiturn \ --batch_size auto ``` **GSM8k** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.9,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ --tasks gsm8k \ --num_fewshot 8 \ --apply_chat_template\ --fewshot_as_multiturn \ --batch_size auto ``` **Hellaswag** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ --tasks hellaswag \ --num_fewshot 10 \ --apply_chat_template\ --fewshot_as_multiturn \ --batch_size auto ``` **Winogrande** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ --tasks winogrande \ --num_fewshot 5 \ --apply_chat_template\ --fewshot_as_multiturn \ --batch_size auto ``` **TruthfulQA** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ --tasks truthfulqa \ --num_fewshot 0 \ --apply_chat_template\ --batch_size auto ``` **MMLU-pro** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ --tasks mmlu_pro \ --num_fewshot 5 \ --apply_chat_template\ --fewshot_as_multiturn \ --batch_size auto ``` **MMMU** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \ --tasks mmmu \ --apply_chat_template\ --batch_size auto ``` **ChartQA** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \ --tasks chartqa \ --apply_chat_template\ --batch_size auto ``` **Coding** The commands below can be used for mbpp by simply replacing the dataset name. *Generation* ``` python3 codegen/generate.py \ --model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8 \ --bs 16 \ --temperature 0.2 \ --n_samples 50 \ --root "." \ --dataset humaneval ``` *Sanitization* ``` python3 evalplus/sanitize.py \ humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8_vllm_temp_0.2 ``` *Evaluation* ``` evalplus.evaluate \ --dataset humaneval \ --samples humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8_vllm_temp_0.2-sanitized ```
### Accuracy
Category Benchmark Mistral-Small-3.1-24B-Instruct-2503 Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8
(this model)
Recovery
OpenLLM v1 MMLU (5-shot) 80.67 80.40 99.7%
ARC Challenge (25-shot) 72.78 73.46 100.9%
GSM-8K (5-shot, strict-match) 65.35 70.58 108.0%
Hellaswag (10-shot) 83.70 82.26 98.3%
Winogrande (5-shot) 83.74 80.90 96.6%
TruthfulQA (0-shot, mc2) 70.62 69.15 97.9%
Average 76.14 76.13 100.0%
MMLU-Pro (5-shot) 67.25 66.54 98.9%
GPQA CoT main (5-shot) 42.63 44.64 104.7%
GPQA CoT diamond (5-shot) 45.96 41.92 91.2%
Coding HumanEval pass@1 84.70 84.20 99.4%
HumanEval+ pass@1 79.50 81.00 101.9%
MBPP pass@1 71.10 72.10 101.4%
MBPP+ pass@1 60.60 62.10 100.7%
Vision MMMU (0-shot) 52.11 53.11 101.9%
ChartQA (0-shot) 81.36 82.36 101.2%