zhilinw6 commited on
Commit
c63a7a8
·
verified ·
1 Parent(s): 77d2519

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +1226 -0
README.md ADDED
@@ -0,0 +1,1226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model-index:
3
+ - name: Quark-Emb-1.5b
4
+ results:
5
+ - dataset:
6
+ config: default
7
+ name: MTEB AFQMC
8
+ revision: None
9
+ split: validation
10
+ type: C-MTEB/AFQMC
11
+ metrics:
12
+ - type: cosine_pearson
13
+ value: 47.14285927987258
14
+ - type: cosine_spearman
15
+ value: 48.161200368263025
16
+ - type: manhattan_pearson
17
+ value: 46.852921578928694
18
+ - type: manhattan_spearman
19
+ value: 48.0768829644805
20
+ - type: euclidean_pearson
21
+ value: 46.934710408297846
22
+ - type: euclidean_spearman
23
+ value: 48.161200368263025
24
+ - type: main_score
25
+ value: 48.161200368263025
26
+ task:
27
+ type: STS
28
+ - dataset:
29
+ config: default
30
+ name: MTEB ATEC
31
+ revision: None
32
+ split: test
33
+ type: C-MTEB/ATEC
34
+ metrics:
35
+ - type: cosine_pearson
36
+ value: 53.31694395347832
37
+ - type: cosine_spearman
38
+ value: 50.82142054857025
39
+ - type: manhattan_pearson
40
+ value: 55.63018022546727
41
+ - type: manhattan_spearman
42
+ value: 50.808925663235286
43
+ - type: euclidean_pearson
44
+ value: 55.630897902214585
45
+ - type: euclidean_spearman
46
+ value: 50.82142054857025
47
+ - type: main_score
48
+ value: 50.82142054857025
49
+ task:
50
+ type: STS
51
+ - dataset:
52
+ config: zh
53
+ name: MTEB AmazonReviewsClassification (zh)
54
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
55
+ split: test
56
+ type: mteb/amazon_reviews_multi
57
+ metrics:
58
+ - type: accuracy
59
+ value: 51.93800000000001
60
+ - type: accuracy_stderr
61
+ value: 1.6225030046197138
62
+ - type: f1
63
+ value: 49.36480272612989
64
+ - type: f1_stderr
65
+ value: 2.402473535325102
66
+ - type: main_score
67
+ value: 51.93800000000001
68
+ task:
69
+ type: Classification
70
+ - dataset:
71
+ config: zh
72
+ name: MTEB AmazonReviewsClassification (zh)
73
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
74
+ split: validation
75
+ type: mteb/amazon_reviews_multi
76
+ metrics:
77
+ - type: accuracy
78
+ value: 50.757999999999996
79
+ - type: accuracy_stderr
80
+ value: 1.1949041802588176
81
+ - type: f1
82
+ value: 48.18542841607346
83
+ - type: f1_stderr
84
+ value: 2.025507464835368
85
+ - type: main_score
86
+ value: 50.757999999999996
87
+ task:
88
+ type: Classification
89
+ - dataset:
90
+ config: default
91
+ name: MTEB BQ
92
+ revision: None
93
+ split: test
94
+ type: C-MTEB/BQ
95
+ metrics:
96
+ - type: cosine_pearson
97
+ value: 66.94471481392273
98
+ - type: cosine_spearman
99
+ value: 67.86811107045457
100
+ - type: manhattan_pearson
101
+ value: 65.56778188873142
102
+ - type: manhattan_spearman
103
+ value: 67.83060870618156
104
+ - type: euclidean_pearson
105
+ value: 65.63668085779311
106
+ - type: euclidean_spearman
107
+ value: 67.86811107045457
108
+ - type: main_score
109
+ value: 67.86811107045457
110
+ task:
111
+ type: STS
112
+ - dataset:
113
+ config: default
114
+ name: MTEB CLSClusteringP2P
115
+ revision: None
116
+ split: test
117
+ type: C-MTEB/CLSClusteringP2P
118
+ metrics:
119
+ - type: v_measure
120
+ value: 58.53706905558472
121
+ - type: v_measure_std
122
+ value: 1.3628784531981595
123
+ - type: main_score
124
+ value: 58.53706905558472
125
+ task:
126
+ type: Clustering
127
+ - dataset:
128
+ config: default
129
+ name: MTEB CLSClusteringS2S
130
+ revision: None
131
+ split: test
132
+ type: C-MTEB/CLSClusteringS2S
133
+ metrics:
134
+ - type: v_measure
135
+ value: 54.70969139354621
136
+ - type: v_measure_std
137
+ value: 1.938384688132648
138
+ - type: main_score
139
+ value: 54.70969139354621
140
+ task:
141
+ type: Clustering
142
+ - dataset:
143
+ config: default
144
+ name: MTEB CMedQAv1
145
+ revision: None
146
+ split: test
147
+ type: C-MTEB/CMedQAv1-reranking
148
+ metrics:
149
+ - type: map
150
+ value: 87.79521046311835
151
+ - type: mrr
152
+ value: 90.01547619047618
153
+ - type: main_score
154
+ value: 87.79521046311835
155
+ task:
156
+ type: Reranking
157
+ - dataset:
158
+ config: default
159
+ name: MTEB CMedQAv2
160
+ revision: None
161
+ split: test
162
+ type: C-MTEB/CMedQAv2-reranking
163
+ metrics:
164
+ - type: map
165
+ value: 87.89916670870878
166
+ - type: mrr
167
+ value: 89.92595238095238
168
+ - type: main_score
169
+ value: 87.89916670870878
170
+ task:
171
+ type: Reranking
172
+ - dataset:
173
+ config: default
174
+ name: MTEB CmedqaRetrieval
175
+ revision: None
176
+ split: dev
177
+ type: C-MTEB/CmedqaRetrieval
178
+ metrics:
179
+ - type: map_at_1
180
+ value: 25.444
181
+ - type: map_at_10
182
+ value: 37.763999999999996
183
+ - type: map_at_100
184
+ value: 39.641999999999996
185
+ - type: map_at_1000
186
+ value: 39.756
187
+ - type: map_at_3
188
+ value: 33.742
189
+ - type: map_at_5
190
+ value: 35.906
191
+ - type: mrr_at_1
192
+ value: 38.71
193
+ - type: mrr_at_10
194
+ value: 46.744
195
+ - type: mrr_at_100
196
+ value: 47.745
197
+ - type: mrr_at_1000
198
+ value: 47.791
199
+ - type: mrr_at_3
200
+ value: 44.324000000000005
201
+ - type: mrr_at_5
202
+ value: 45.696
203
+ - type: ndcg_at_1
204
+ value: 38.71
205
+ - type: ndcg_at_10
206
+ value: 44.285000000000004
207
+ - type: ndcg_at_100
208
+ value: 51.69200000000001
209
+ - type: ndcg_at_1000
210
+ value: 53.669999999999995
211
+ - type: ndcg_at_3
212
+ value: 39.273
213
+ - type: ndcg_at_5
214
+ value: 41.254000000000005
215
+ - type: precision_at_1
216
+ value: 38.71
217
+ - type: precision_at_10
218
+ value: 9.825000000000001
219
+ - type: precision_at_100
220
+ value: 1.583
221
+ - type: precision_at_1000
222
+ value: 0.183
223
+ - type: precision_at_3
224
+ value: 22.197
225
+ - type: precision_at_5
226
+ value: 16.019
227
+ - type: recall_at_1
228
+ value: 25.444
229
+ - type: recall_at_10
230
+ value: 54.535999999999994
231
+ - type: recall_at_100
232
+ value: 85.307
233
+ - type: recall_at_1000
234
+ value: 98.473
235
+ - type: recall_at_3
236
+ value: 39.274
237
+ - type: recall_at_5
238
+ value: 45.580999999999996
239
+ - type: main_score
240
+ value: 44.285000000000004
241
+ task:
242
+ type: Retrieval
243
+ - dataset:
244
+ config: default
245
+ name: MTEB Cmnli
246
+ revision: None
247
+ split: validation
248
+ type: C-MTEB/CMNLI
249
+ metrics:
250
+ - type: cos_sim_accuracy
251
+ value: 89.58508719182201
252
+ - type: cos_sim_accuracy_threshold
253
+ value: 97.09511288861569
254
+ - type: cos_sim_ap
255
+ value: 95.12338246323735
256
+ - type: cos_sim_f1
257
+ value: 90.19211324570271
258
+ - type: cos_sim_f1_threshold
259
+ value: 97.02014138938755
260
+ - type: cos_sim_precision
261
+ value: 86.80795847750865
262
+ - type: cos_sim_recall
263
+ value: 93.85083002104278
264
+ - type: dot_accuracy
265
+ value: 89.58508719182201
266
+ - type: dot_accuracy_threshold
267
+ value: 97.0951128886157
268
+ - type: dot_ap
269
+ value: 95.13959275940286
270
+ - type: dot_f1
271
+ value: 90.19211324570271
272
+ - type: dot_f1_threshold
273
+ value: 97.02014138938755
274
+ - type: dot_precision
275
+ value: 86.80795847750865
276
+ - type: dot_recall
277
+ value: 93.85083002104278
278
+ - type: euclidean_accuracy
279
+ value: 89.58508719182201
280
+ - type: euclidean_accuracy_threshold
281
+ value: 24.103473235790947
282
+ - type: euclidean_ap
283
+ value: 95.12338246323735
284
+ - type: euclidean_f1
285
+ value: 90.19211324570271
286
+ - type: euclidean_f1_threshold
287
+ value: 24.412531977088996
288
+ - type: euclidean_precision
289
+ value: 86.80795847750865
290
+ - type: euclidean_recall
291
+ value: 93.85083002104278
292
+ - type: manhattan_accuracy
293
+ value: 89.57306073361396
294
+ - type: manhattan_accuracy_threshold
295
+ value: 729.1211254739587
296
+ - type: manhattan_ap
297
+ value: 95.12388319543341
298
+ - type: manhattan_f1
299
+ value: 90.13956654941563
300
+ - type: manhattan_f1_threshold
301
+ value: 733.155723492131
302
+ - type: manhattan_precision
303
+ value: 87.56613756613757
304
+ - type: manhattan_recall
305
+ value: 92.8688332943652
306
+ - type: max_accuracy
307
+ value: 89.58508719182201
308
+ - type: max_ap
309
+ value: 95.13959275940286
310
+ - type: max_f1
311
+ value: 90.19211324570271
312
+ task:
313
+ type: PairClassification
314
+ - dataset:
315
+ config: default
316
+ name: MTEB CovidRetrieval
317
+ revision: None
318
+ split: dev
319
+ type: C-MTEB/CovidRetrieval
320
+ metrics:
321
+ - type: map_at_1
322
+ value: 75.29
323
+ - type: map_at_10
324
+ value: 82.392
325
+ - type: map_at_100
326
+ value: 82.581
327
+ - type: map_at_1000
328
+ value: 82.585
329
+ - type: map_at_3
330
+ value: 80.88300000000001
331
+ - type: map_at_5
332
+ value: 81.71199999999999
333
+ - type: mrr_at_1
334
+ value: 75.553
335
+ - type: mrr_at_10
336
+ value: 82.422
337
+ - type: mrr_at_100
338
+ value: 82.6
339
+ - type: mrr_at_1000
340
+ value: 82.604
341
+ - type: mrr_at_3
342
+ value: 80.927
343
+ - type: mrr_at_5
344
+ value: 81.765
345
+ - type: ndcg_at_1
346
+ value: 75.44800000000001
347
+ - type: ndcg_at_10
348
+ value: 85.655
349
+ - type: ndcg_at_100
350
+ value: 86.435
351
+ - type: ndcg_at_1000
352
+ value: 86.541
353
+ - type: ndcg_at_3
354
+ value: 82.60300000000001
355
+ - type: ndcg_at_5
356
+ value: 84.062
357
+ - type: precision_at_1
358
+ value: 75.44800000000001
359
+ - type: precision_at_10
360
+ value: 9.663
361
+ - type: precision_at_100
362
+ value: 1.002
363
+ - type: precision_at_1000
364
+ value: 0.101
365
+ - type: precision_at_3
366
+ value: 29.329
367
+ - type: precision_at_5
368
+ value: 18.314
369
+ - type: recall_at_1
370
+ value: 75.29
371
+ - type: recall_at_10
372
+ value: 95.838
373
+ - type: recall_at_100
374
+ value: 99.157
375
+ - type: recall_at_1000
376
+ value: 100.0
377
+ - type: recall_at_3
378
+ value: 87.566
379
+ - type: recall_at_5
380
+ value: 90.991
381
+ - type: main_score
382
+ value: 85.655
383
+ task:
384
+ type: Retrieval
385
+ - dataset:
386
+ config: default
387
+ name: MTEB DuRetrieval
388
+ revision: None
389
+ split: dev
390
+ type: C-MTEB/DuRetrieval
391
+ metrics:
392
+ - type: map_at_1
393
+ value: 27.584999999999997
394
+ - type: map_at_10
395
+ value: 85.112
396
+ - type: map_at_100
397
+ value: 87.632
398
+ - type: map_at_1000
399
+ value: 87.654
400
+ - type: map_at_3
401
+ value: 59.504999999999995
402
+ - type: map_at_5
403
+ value: 75.029
404
+ - type: mrr_at_1
405
+ value: 93.30000000000001
406
+ - type: mrr_at_10
407
+ value: 95.44200000000001
408
+ - type: mrr_at_100
409
+ value: 95.498
410
+ - type: mrr_at_1000
411
+ value: 95.5
412
+ - type: mrr_at_3
413
+ value: 95.258
414
+ - type: mrr_at_5
415
+ value: 95.36099999999999
416
+ - type: ndcg_at_1
417
+ value: 93.30000000000001
418
+ - type: ndcg_at_10
419
+ value: 91.086
420
+ - type: ndcg_at_100
421
+ value: 93.089
422
+ - type: ndcg_at_1000
423
+ value: 93.297
424
+ - type: ndcg_at_3
425
+ value: 90.432
426
+ - type: ndcg_at_5
427
+ value: 89.361
428
+ - type: precision_at_1
429
+ value: 93.30000000000001
430
+ - type: precision_at_10
431
+ value: 43.21
432
+ - type: precision_at_100
433
+ value: 4.857
434
+ - type: precision_at_1000
435
+ value: 0.49
436
+ - type: precision_at_3
437
+ value: 81.0
438
+ - type: precision_at_5
439
+ value: 68.28999999999999
440
+ - type: recall_at_1
441
+ value: 27.584999999999997
442
+ - type: recall_at_10
443
+ value: 91.73599999999999
444
+ - type: recall_at_100
445
+ value: 98.648
446
+ - type: recall_at_1000
447
+ value: 99.751
448
+ - type: recall_at_3
449
+ value: 61.378
450
+ - type: recall_at_5
451
+ value: 78.672
452
+ - type: main_score
453
+ value: 91.086
454
+ task:
455
+ type: Retrieval
456
+ - dataset:
457
+ config: default
458
+ name: MTEB EcomRetrieval
459
+ revision: None
460
+ split: dev
461
+ type: C-MTEB/EcomRetrieval
462
+ metrics:
463
+ - type: map_at_1
464
+ value: 55.1
465
+ - type: map_at_10
466
+ value: 65.268
467
+ - type: map_at_100
468
+ value: 65.756
469
+ - type: map_at_1000
470
+ value: 65.765
471
+ - type: map_at_3
472
+ value: 63.132999999999996
473
+ - type: map_at_5
474
+ value: 64.25800000000001
475
+ - type: mrr_at_1
476
+ value: 55.1
477
+ - type: mrr_at_10
478
+ value: 65.268
479
+ - type: mrr_at_100
480
+ value: 65.756
481
+ - type: mrr_at_1000
482
+ value: 65.765
483
+ - type: mrr_at_3
484
+ value: 63.132999999999996
485
+ - type: mrr_at_5
486
+ value: 64.25800000000001
487
+ - type: ndcg_at_1
488
+ value: 55.1
489
+ - type: ndcg_at_10
490
+ value: 70.15599999999999
491
+ - type: ndcg_at_100
492
+ value: 72.368
493
+ - type: ndcg_at_1000
494
+ value: 72.635
495
+ - type: ndcg_at_3
496
+ value: 65.697
497
+ - type: ndcg_at_5
498
+ value: 67.741
499
+ - type: precision_at_1
500
+ value: 55.1
501
+ - type: precision_at_10
502
+ value: 8.55
503
+ - type: precision_at_100
504
+ value: 0.955
505
+ - type: precision_at_1000
506
+ value: 0.098
507
+ - type: precision_at_3
508
+ value: 24.367
509
+ - type: precision_at_5
510
+ value: 15.620000000000001
511
+ - type: recall_at_1
512
+ value: 55.1
513
+ - type: recall_at_10
514
+ value: 85.5
515
+ - type: recall_at_100
516
+ value: 95.5
517
+ - type: recall_at_1000
518
+ value: 97.6
519
+ - type: recall_at_3
520
+ value: 73.1
521
+ - type: recall_at_5
522
+ value: 78.10000000000001
523
+ - type: main_score
524
+ value: 70.15599999999999
525
+ task:
526
+ type: Retrieval
527
+ - dataset:
528
+ config: default
529
+ name: MTEB IFlyTek
530
+ revision: None
531
+ split: validation
532
+ type: C-MTEB/IFlyTek-classification
533
+ metrics:
534
+ - type: accuracy
535
+ value: 52.743362831858406
536
+ - type: accuracy_stderr
537
+ value: 0.4449967616714387
538
+ - type: f1
539
+ value: 40.13427504900375
540
+ - type: f1_stderr
541
+ value: 0.17565290177989018
542
+ - type: main_score
543
+ value: 52.743362831858406
544
+ task:
545
+ type: Classification
546
+ - dataset:
547
+ config: default
548
+ name: MTEB JDReview
549
+ revision: None
550
+ split: test
551
+ type: C-MTEB/JDReview-classification
552
+ metrics:
553
+ - type: accuracy
554
+ value: 90.13133208255161
555
+ - type: accuracy_stderr
556
+ value: 0.9647249630155678
557
+ - type: ap
558
+ value: 62.848199712439765
559
+ - type: ap_stderr
560
+ value: 1.986859492917626
561
+ - type: f1
562
+ value: 85.48543445690254
563
+ - type: f1_stderr
564
+ value: 1.0490059319804828
565
+ - type: main_score
566
+ value: 90.13133208255161
567
+ task:
568
+ type: Classification
569
+ - dataset:
570
+ config: default
571
+ name: MTEB LCQMC
572
+ revision: None
573
+ split: test
574
+ type: C-MTEB/LCQMC
575
+ metrics:
576
+ - type: cosine_pearson
577
+ value: 77.75677384428634
578
+ - type: cosine_spearman
579
+ value: 78.86284859566986
580
+ - type: manhattan_pearson
581
+ value: 79.8032754323316
582
+ - type: manhattan_spearman
583
+ value: 78.85558562163624
584
+ - type: euclidean_pearson
585
+ value: 79.82552324704292
586
+ - type: euclidean_spearman
587
+ value: 78.86284859566986
588
+ - type: main_score
589
+ value: 78.86284859566986
590
+ task:
591
+ type: STS
592
+ - dataset:
593
+ config: default
594
+ name: MTEB MMarcoReranking
595
+ revision: None
596
+ split: dev
597
+ type: C-MTEB/Mmarco-reranking
598
+ metrics:
599
+ - type: map
600
+ value: 30.737025407798523
601
+ - type: mrr
602
+ value: 29.26111111111111
603
+ - type: main_score
604
+ value: 30.737025407798523
605
+ task:
606
+ type: Reranking
607
+ - dataset:
608
+ config: default
609
+ name: MTEB MMarcoRetrieval
610
+ revision: None
611
+ split: dev
612
+ type: C-MTEB/MMarcoRetrieval
613
+ metrics:
614
+ - type: map_at_1
615
+ value: 70.244
616
+ - type: map_at_10
617
+ value: 78.975
618
+ - type: map_at_100
619
+ value: 79.253
620
+ - type: map_at_1000
621
+ value: 79.26100000000001
622
+ - type: map_at_3
623
+ value: 77.363
624
+ - type: map_at_5
625
+ value: 78.364
626
+ - type: mrr_at_1
627
+ value: 72.521
628
+ - type: mrr_at_10
629
+ value: 79.514
630
+ - type: mrr_at_100
631
+ value: 79.75
632
+ - type: mrr_at_1000
633
+ value: 79.757
634
+ - type: mrr_at_3
635
+ value: 78.095
636
+ - type: mrr_at_5
637
+ value: 78.987
638
+ - type: ndcg_at_1
639
+ value: 72.521
640
+ - type: ndcg_at_10
641
+ value: 82.395
642
+ - type: ndcg_at_100
643
+ value: 83.554
644
+ - type: ndcg_at_1000
645
+ value: 83.774
646
+ - type: ndcg_at_3
647
+ value: 79.341
648
+ - type: ndcg_at_5
649
+ value: 81.036
650
+ - type: precision_at_1
651
+ value: 72.521
652
+ - type: precision_at_10
653
+ value: 9.812
654
+ - type: precision_at_100
655
+ value: 1.038
656
+ - type: precision_at_1000
657
+ value: 0.106
658
+ - type: precision_at_3
659
+ value: 29.694
660
+ - type: precision_at_5
661
+ value: 18.712999999999997
662
+ - type: recall_at_1
663
+ value: 70.244
664
+ - type: recall_at_10
665
+ value: 92.35
666
+ - type: recall_at_100
667
+ value: 97.419
668
+ - type: recall_at_1000
669
+ value: 99.16199999999999
670
+ - type: recall_at_3
671
+ value: 84.303
672
+ - type: recall_at_5
673
+ value: 88.325
674
+ - type: main_score
675
+ value: 82.395
676
+ task:
677
+ type: Retrieval
678
+ - dataset:
679
+ config: zh-CN
680
+ name: MTEB MassiveIntentClassification (zh-CN)
681
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
682
+ split: test
683
+ type: mteb/amazon_massive_intent
684
+ metrics:
685
+ - type: accuracy
686
+ value: 76.3752521856086
687
+ - type: accuracy_stderr
688
+ value: 1.3911220977886072
689
+ - type: f1
690
+ value: 73.38330839246518
691
+ - type: f1_stderr
692
+ value: 0.9864886479418102
693
+ - type: main_score
694
+ value: 76.3752521856086
695
+ task:
696
+ type: Classification
697
+ - dataset:
698
+ config: zh-CN
699
+ name: MTEB MassiveScenarioClassification (zh-CN)
700
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
701
+ split: test
702
+ type: mteb/amazon_massive_scenario
703
+ metrics:
704
+ - type: accuracy
705
+ value: 81.8022864828514
706
+ - type: accuracy_stderr
707
+ value: 1.4060452754762354
708
+ - type: f1
709
+ value: 80.85164585310973
710
+ - type: f1_stderr
711
+ value: 1.2664399398388577
712
+ - type: main_score
713
+ value: 81.8022864828514
714
+ task:
715
+ type: Classification
716
+ - dataset:
717
+ config: default
718
+ name: MTEB MedicalRetrieval
719
+ revision: None
720
+ split: dev
721
+ type: C-MTEB/MedicalRetrieval
722
+ metrics:
723
+ - type: map_at_1
724
+ value: 57.199999999999996
725
+ - type: map_at_10
726
+ value: 63.346999999999994
727
+ - type: map_at_100
728
+ value: 63.852
729
+ - type: map_at_1000
730
+ value: 63.88700000000001
731
+ - type: map_at_3
732
+ value: 61.967000000000006
733
+ - type: map_at_5
734
+ value: 62.66199999999999
735
+ - type: mrr_at_1
736
+ value: 57.3
737
+ - type: mrr_at_10
738
+ value: 63.397000000000006
739
+ - type: mrr_at_100
740
+ value: 63.902
741
+ - type: mrr_at_1000
742
+ value: 63.937
743
+ - type: mrr_at_3
744
+ value: 62.017
745
+ - type: mrr_at_5
746
+ value: 62.712
747
+ - type: ndcg_at_1
748
+ value: 57.199999999999996
749
+ - type: ndcg_at_10
750
+ value: 66.38300000000001
751
+ - type: ndcg_at_100
752
+ value: 69.267
753
+ - type: ndcg_at_1000
754
+ value: 70.233
755
+ - type: ndcg_at_3
756
+ value: 63.44499999999999
757
+ - type: ndcg_at_5
758
+ value: 64.71000000000001
759
+ - type: precision_at_1
760
+ value: 57.199999999999996
761
+ - type: precision_at_10
762
+ value: 7.6
763
+ - type: precision_at_100
764
+ value: 0.905
765
+ - type: precision_at_1000
766
+ value: 0.098
767
+ - type: precision_at_3
768
+ value: 22.567
769
+ - type: precision_at_5
770
+ value: 14.16
771
+ - type: recall_at_1
772
+ value: 57.199999999999996
773
+ - type: recall_at_10
774
+ value: 76.0
775
+ - type: recall_at_100
776
+ value: 90.5
777
+ - type: recall_at_1000
778
+ value: 98.2
779
+ - type: recall_at_3
780
+ value: 67.7
781
+ - type: recall_at_5
782
+ value: 70.8
783
+ - type: main_score
784
+ value: 66.38300000000001
785
+ task:
786
+ type: Retrieval
787
+ - dataset:
788
+ config: default
789
+ name: MTEB MultilingualSentiment
790
+ revision: None
791
+ split: validation
792
+ type: C-MTEB/MultilingualSentiment-classification
793
+ metrics:
794
+ - type: accuracy
795
+ value: 80.12333333333335
796
+ - type: accuracy_stderr
797
+ value: 0.31377628265303376
798
+ - type: f1
799
+ value: 80.26166732998303
800
+ - type: f1_stderr
801
+ value: 0.2836457609943486
802
+ - type: main_score
803
+ value: 80.12333333333335
804
+ task:
805
+ type: Classification
806
+ - dataset:
807
+ config: default
808
+ name: MTEB Ocnli
809
+ revision: None
810
+ split: validation
811
+ type: C-MTEB/OCNLI
812
+ metrics:
813
+ - type: cos_sim_accuracy
814
+ value: 87.54737412019492
815
+ - type: cos_sim_accuracy_threshold
816
+ value: 96.99121475650863
817
+ - type: cos_sim_ap
818
+ value: 91.71816430648396
819
+ - type: cos_sim_f1
820
+ value: 88.27655310621243
821
+ - type: cos_sim_f1_threshold
822
+ value: 96.8697507135398
823
+ - type: cos_sim_precision
824
+ value: 83.98474737845567
825
+ - type: cos_sim_recall
826
+ value: 93.03062302006336
827
+ - type: dot_accuracy
828
+ value: 87.54737412019492
829
+ - type: dot_accuracy_threshold
830
+ value: 96.99121475650863
831
+ - type: dot_ap
832
+ value: 91.71816430648396
833
+ - type: dot_f1
834
+ value: 88.27655310621243
835
+ - type: dot_f1_threshold
836
+ value: 96.86975071353979
837
+ - type: dot_precision
838
+ value: 83.98474737845567
839
+ - type: dot_recall
840
+ value: 93.03062302006336
841
+ - type: euclidean_accuracy
842
+ value: 87.54737412019492
843
+ - type: euclidean_accuracy_threshold
844
+ value: 24.530733065589622
845
+ - type: euclidean_ap
846
+ value: 91.71816430648396
847
+ - type: euclidean_f1
848
+ value: 88.27655310621243
849
+ - type: euclidean_f1_threshold
850
+ value: 25.020988098238107
851
+ - type: euclidean_precision
852
+ value: 83.98474737845567
853
+ - type: euclidean_recall
854
+ value: 93.03062302006336
855
+ - type: manhattan_accuracy
856
+ value: 87.27666486193829
857
+ - type: manhattan_accuracy_threshold
858
+ value: 752.4905438529156
859
+ - type: manhattan_ap
860
+ value: 91.70647280240597
861
+ - type: manhattan_f1
862
+ value: 88.08920425747591
863
+ - type: manhattan_f1_threshold
864
+ value: 752.4905438529156
865
+ - type: manhattan_precision
866
+ value: 84.69785575048732
867
+ - type: manhattan_recall
868
+ value: 91.76346356916578
869
+ - type: max_accuracy
870
+ value: 87.54737412019492
871
+ - type: max_ap
872
+ value: 91.71816430648396
873
+ - type: max_f1
874
+ value: 88.27655310621243
875
+ task:
876
+ type: PairClassification
877
+ - dataset:
878
+ config: default
879
+ name: MTEB OnlineShopping
880
+ revision: None
881
+ split: test
882
+ type: C-MTEB/OnlineShopping-classification
883
+ metrics:
884
+ - type: accuracy
885
+ value: 94.46999999999998
886
+ - type: accuracy_stderr
887
+ value: 0.2865309756378883
888
+ - type: ap
889
+ value: 93.00417328431348
890
+ - type: ap_stderr
891
+ value: 0.5383352662551945
892
+ - type: f1
893
+ value: 94.4618263222835
894
+ - type: f1_stderr
895
+ value: 0.2840342094212124
896
+ - type: main_score
897
+ value: 94.46999999999998
898
+ task:
899
+ type: Classification
900
+ - dataset:
901
+ config: default
902
+ name: MTEB PAWSX
903
+ revision: None
904
+ split: test
905
+ type: C-MTEB/PAWSX
906
+ metrics:
907
+ - type: cosine_pearson
908
+ value: 46.85211982536296
909
+ - type: cosine_spearman
910
+ value: 49.917839688145996
911
+ - type: manhattan_pearson
912
+ value: 49.66820248148123
913
+ - type: manhattan_spearman
914
+ value: 49.94013555794742
915
+ - type: euclidean_pearson
916
+ value: 49.63608491973345
917
+ - type: euclidean_spearman
918
+ value: 49.917839688145996
919
+ - type: main_score
920
+ value: 49.917839688145996
921
+ task:
922
+ type: STS
923
+ - dataset:
924
+ config: default
925
+ name: MTEB QBQTC
926
+ revision: None
927
+ split: test
928
+ type: C-MTEB/QBQTC
929
+ metrics:
930
+ - type: cosine_pearson
931
+ value: 55.18355221701257
932
+ - type: cosine_spearman
933
+ value: 54.67390932826382
934
+ - type: manhattan_pearson
935
+ value: 53.32847494683504
936
+ - type: manhattan_spearman
937
+ value: 54.61660160532041
938
+ - type: euclidean_pearson
939
+ value: 53.405599174765364
940
+ - type: euclidean_spearman
941
+ value: 54.67390932826382
942
+ - type: main_score
943
+ value: 54.67390932826382
944
+ task:
945
+ type: STS
946
+ - dataset:
947
+ config: zh
948
+ name: MTEB STS22 (zh)
949
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
950
+ split: test
951
+ type: mteb/sts22-crosslingual-sts
952
+ metrics:
953
+ - type: cosine_pearson
954
+ value: 67.89319522460808
955
+ - type: cosine_spearman
956
+ value: 68.98524514928238
957
+ - type: manhattan_pearson
958
+ value: 67.65257700660463
959
+ - type: manhattan_spearman
960
+ value: 69.17199742136434
961
+ - type: euclidean_pearson
962
+ value: 67.52535570217756
963
+ - type: euclidean_spearman
964
+ value: 68.98524514928238
965
+ - type: main_score
966
+ value: 68.98524514928238
967
+ task:
968
+ type: STS
969
+ - dataset:
970
+ config: default
971
+ name: MTEB STSB
972
+ revision: None
973
+ split: test
974
+ type: C-MTEB/STSB
975
+ metrics:
976
+ - type: cosine_pearson
977
+ value: 75.4871803618505
978
+ - type: cosine_spearman
979
+ value: 76.17471665593993
980
+ - type: manhattan_pearson
981
+ value: 75.73597640243183
982
+ - type: manhattan_spearman
983
+ value: 76.20048941210949
984
+ - type: euclidean_pearson
985
+ value: 75.66172628182565
986
+ - type: euclidean_spearman
987
+ value: 76.17471665593993
988
+ - type: main_score
989
+ value: 76.17471665593993
990
+ task:
991
+ type: STS
992
+ - dataset:
993
+ config: default
994
+ name: MTEB T2Reranking
995
+ revision: None
996
+ split: dev
997
+ type: C-MTEB/T2Reranking
998
+ metrics:
999
+ - type: map
1000
+ value: 67.45036855302303
1001
+ - type: mrr
1002
+ value: 78.15107441080697
1003
+ - type: main_score
1004
+ value: 67.45036855302303
1005
+ task:
1006
+ type: Reranking
1007
+ - dataset:
1008
+ config: default
1009
+ name: MTEB T2Retrieval
1010
+ revision: None
1011
+ split: dev
1012
+ type: C-MTEB/T2Retrieval
1013
+ metrics:
1014
+ - type: map_at_1
1015
+ value: 28.094
1016
+ - type: map_at_10
1017
+ value: 79.367
1018
+ - type: map_at_100
1019
+ value: 82.89800000000001
1020
+ - type: map_at_1000
1021
+ value: 82.953
1022
+ - type: map_at_3
1023
+ value: 55.782
1024
+ - type: map_at_5
1025
+ value: 68.667
1026
+ - type: mrr_at_1
1027
+ value: 91.237
1028
+ - type: mrr_at_10
1029
+ value: 93.399
1030
+ - type: mrr_at_100
1031
+ value: 93.479
1032
+ - type: mrr_at_1000
1033
+ value: 93.482
1034
+ - type: mrr_at_3
1035
+ value: 93.029
1036
+ - type: mrr_at_5
1037
+ value: 93.273
1038
+ - type: ndcg_at_1
1039
+ value: 91.237
1040
+ - type: ndcg_at_10
1041
+ value: 86.368
1042
+ - type: ndcg_at_100
1043
+ value: 89.637
1044
+ - type: ndcg_at_1000
1045
+ value: 90.16300000000001
1046
+ - type: ndcg_at_3
1047
+ value: 87.691
1048
+ - type: ndcg_at_5
1049
+ value: 86.462
1050
+ - type: precision_at_1
1051
+ value: 91.237
1052
+ - type: precision_at_10
1053
+ value: 42.841
1054
+ - type: precision_at_100
1055
+ value: 5.047
1056
+ - type: precision_at_1000
1057
+ value: 0.517
1058
+ - type: precision_at_3
1059
+ value: 76.708
1060
+ - type: precision_at_5
1061
+ value: 64.428
1062
+ - type: recall_at_1
1063
+ value: 28.094
1064
+ - type: recall_at_10
1065
+ value: 85.181
1066
+ - type: recall_at_100
1067
+ value: 95.953
1068
+ - type: recall_at_1000
1069
+ value: 98.63
1070
+ - type: recall_at_3
1071
+ value: 57.267999999999994
1072
+ - type: recall_at_5
1073
+ value: 71.75399999999999
1074
+ - type: main_score
1075
+ value: 86.368
1076
+ task:
1077
+ type: Retrieval
1078
+ - dataset:
1079
+ config: default
1080
+ name: MTEB TNews
1081
+ revision: None
1082
+ split: validation
1083
+ type: C-MTEB/TNews-classification
1084
+ metrics:
1085
+ - type: accuracy
1086
+ value: 55.482
1087
+ - type: accuracy_stderr
1088
+ value: 0.3268577672321692
1089
+ - type: f1
1090
+ value: 53.57211848235611
1091
+ - type: f1_stderr
1092
+ value: 0.3511138517262321
1093
+ - type: main_score
1094
+ value: 55.482
1095
+ task:
1096
+ type: Classification
1097
+ - dataset:
1098
+ config: default
1099
+ name: MTEB ThuNewsClusteringP2P
1100
+ revision: None
1101
+ split: test
1102
+ type: C-MTEB/ThuNewsClusteringP2P
1103
+ metrics:
1104
+ - type: v_measure
1105
+ value: 79.44895384385426
1106
+ - type: v_measure_std
1107
+ value: 2.315777338929376
1108
+ - type: main_score
1109
+ value: 79.44895384385426
1110
+ task:
1111
+ type: Clustering
1112
+ - dataset:
1113
+ config: default
1114
+ name: MTEB ThuNewsClusteringS2S
1115
+ revision: None
1116
+ split: test
1117
+ type: C-MTEB/ThuNewsClusteringS2S
1118
+ metrics:
1119
+ - type: v_measure
1120
+ value: 76.95904984506356
1121
+ - type: v_measure_std
1122
+ value: 2.244801218820472
1123
+ - type: main_score
1124
+ value: 76.95904984506356
1125
+ task:
1126
+ type: Clustering
1127
+ - dataset:
1128
+ config: default
1129
+ name: MTEB VideoRetrieval
1130
+ revision: None
1131
+ split: dev
1132
+ type: C-MTEB/VideoRetrieval
1133
+ metrics:
1134
+ - type: map_at_1
1135
+ value: 65.60000000000001
1136
+ - type: map_at_10
1137
+ value: 75.24499999999999
1138
+ - type: map_at_100
1139
+ value: 75.51
1140
+ - type: map_at_1000
1141
+ value: 75.519
1142
+ - type: map_at_3
1143
+ value: 73.68299999999999
1144
+ - type: map_at_5
1145
+ value: 74.638
1146
+ - type: mrr_at_1
1147
+ value: 65.60000000000001
1148
+ - type: mrr_at_10
1149
+ value: 75.24499999999999
1150
+ - type: mrr_at_100
1151
+ value: 75.51
1152
+ - type: mrr_at_1000
1153
+ value: 75.519
1154
+ - type: mrr_at_3
1155
+ value: 73.68299999999999
1156
+ - type: mrr_at_5
1157
+ value: 74.638
1158
+ - type: ndcg_at_1
1159
+ value: 65.60000000000001
1160
+ - type: ndcg_at_10
1161
+ value: 79.338
1162
+ - type: ndcg_at_100
1163
+ value: 80.585
1164
+ - type: ndcg_at_1000
1165
+ value: 80.772
1166
+ - type: ndcg_at_3
1167
+ value: 76.189
1168
+ - type: ndcg_at_5
1169
+ value: 77.915
1170
+ - type: precision_at_1
1171
+ value: 65.60000000000001
1172
+ - type: precision_at_10
1173
+ value: 9.19
1174
+ - type: precision_at_100
1175
+ value: 0.976
1176
+ - type: precision_at_1000
1177
+ value: 0.099
1178
+ - type: precision_at_3
1179
+ value: 27.800000000000004
1180
+ - type: precision_at_5
1181
+ value: 17.52
1182
+ - type: recall_at_1
1183
+ value: 65.60000000000001
1184
+ - type: recall_at_10
1185
+ value: 91.9
1186
+ - type: recall_at_100
1187
+ value: 97.6
1188
+ - type: recall_at_1000
1189
+ value: 99.0
1190
+ - type: recall_at_3
1191
+ value: 83.39999999999999
1192
+ - type: recall_at_5
1193
+ value: 87.6
1194
+ - type: main_score
1195
+ value: 79.338
1196
+ task:
1197
+ type: Retrieval
1198
+ - dataset:
1199
+ config: default
1200
+ name: MTEB Waimai
1201
+ revision: None
1202
+ split: test
1203
+ type: C-MTEB/waimai-classification
1204
+ metrics:
1205
+ - type: accuracy
1206
+ value: 89.9
1207
+ - type: accuracy_stderr
1208
+ value: 0.7861297602813425
1209
+ - type: ap
1210
+ value: 76.33068327298966
1211
+ - type: ap_stderr
1212
+ value: 1.6404446239337744
1213
+ - type: f1
1214
+ value: 88.66175970131309
1215
+ - type: f1_stderr
1216
+ value: 0.7269675835542363
1217
+ - type: main_score
1218
+ value: 89.9
1219
+ task:
1220
+ type: Classification
1221
+ tags:
1222
+ - mteb
1223
+ ---
1224
+ # Quark-Emb-1.5B
1225
+
1226
+ - Chinese Text Embedding Model developed by Alibaba Quark-LLM Team. Details will be published later.