Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,1226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
model-index:
|
3 |
+
- name: Quark-Emb-1.5b
|
4 |
+
results:
|
5 |
+
- dataset:
|
6 |
+
config: default
|
7 |
+
name: MTEB AFQMC
|
8 |
+
revision: None
|
9 |
+
split: validation
|
10 |
+
type: C-MTEB/AFQMC
|
11 |
+
metrics:
|
12 |
+
- type: cosine_pearson
|
13 |
+
value: 47.14285927987258
|
14 |
+
- type: cosine_spearman
|
15 |
+
value: 48.161200368263025
|
16 |
+
- type: manhattan_pearson
|
17 |
+
value: 46.852921578928694
|
18 |
+
- type: manhattan_spearman
|
19 |
+
value: 48.0768829644805
|
20 |
+
- type: euclidean_pearson
|
21 |
+
value: 46.934710408297846
|
22 |
+
- type: euclidean_spearman
|
23 |
+
value: 48.161200368263025
|
24 |
+
- type: main_score
|
25 |
+
value: 48.161200368263025
|
26 |
+
task:
|
27 |
+
type: STS
|
28 |
+
- dataset:
|
29 |
+
config: default
|
30 |
+
name: MTEB ATEC
|
31 |
+
revision: None
|
32 |
+
split: test
|
33 |
+
type: C-MTEB/ATEC
|
34 |
+
metrics:
|
35 |
+
- type: cosine_pearson
|
36 |
+
value: 53.31694395347832
|
37 |
+
- type: cosine_spearman
|
38 |
+
value: 50.82142054857025
|
39 |
+
- type: manhattan_pearson
|
40 |
+
value: 55.63018022546727
|
41 |
+
- type: manhattan_spearman
|
42 |
+
value: 50.808925663235286
|
43 |
+
- type: euclidean_pearson
|
44 |
+
value: 55.630897902214585
|
45 |
+
- type: euclidean_spearman
|
46 |
+
value: 50.82142054857025
|
47 |
+
- type: main_score
|
48 |
+
value: 50.82142054857025
|
49 |
+
task:
|
50 |
+
type: STS
|
51 |
+
- dataset:
|
52 |
+
config: zh
|
53 |
+
name: MTEB AmazonReviewsClassification (zh)
|
54 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
55 |
+
split: test
|
56 |
+
type: mteb/amazon_reviews_multi
|
57 |
+
metrics:
|
58 |
+
- type: accuracy
|
59 |
+
value: 51.93800000000001
|
60 |
+
- type: accuracy_stderr
|
61 |
+
value: 1.6225030046197138
|
62 |
+
- type: f1
|
63 |
+
value: 49.36480272612989
|
64 |
+
- type: f1_stderr
|
65 |
+
value: 2.402473535325102
|
66 |
+
- type: main_score
|
67 |
+
value: 51.93800000000001
|
68 |
+
task:
|
69 |
+
type: Classification
|
70 |
+
- dataset:
|
71 |
+
config: zh
|
72 |
+
name: MTEB AmazonReviewsClassification (zh)
|
73 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
74 |
+
split: validation
|
75 |
+
type: mteb/amazon_reviews_multi
|
76 |
+
metrics:
|
77 |
+
- type: accuracy
|
78 |
+
value: 50.757999999999996
|
79 |
+
- type: accuracy_stderr
|
80 |
+
value: 1.1949041802588176
|
81 |
+
- type: f1
|
82 |
+
value: 48.18542841607346
|
83 |
+
- type: f1_stderr
|
84 |
+
value: 2.025507464835368
|
85 |
+
- type: main_score
|
86 |
+
value: 50.757999999999996
|
87 |
+
task:
|
88 |
+
type: Classification
|
89 |
+
- dataset:
|
90 |
+
config: default
|
91 |
+
name: MTEB BQ
|
92 |
+
revision: None
|
93 |
+
split: test
|
94 |
+
type: C-MTEB/BQ
|
95 |
+
metrics:
|
96 |
+
- type: cosine_pearson
|
97 |
+
value: 66.94471481392273
|
98 |
+
- type: cosine_spearman
|
99 |
+
value: 67.86811107045457
|
100 |
+
- type: manhattan_pearson
|
101 |
+
value: 65.56778188873142
|
102 |
+
- type: manhattan_spearman
|
103 |
+
value: 67.83060870618156
|
104 |
+
- type: euclidean_pearson
|
105 |
+
value: 65.63668085779311
|
106 |
+
- type: euclidean_spearman
|
107 |
+
value: 67.86811107045457
|
108 |
+
- type: main_score
|
109 |
+
value: 67.86811107045457
|
110 |
+
task:
|
111 |
+
type: STS
|
112 |
+
- dataset:
|
113 |
+
config: default
|
114 |
+
name: MTEB CLSClusteringP2P
|
115 |
+
revision: None
|
116 |
+
split: test
|
117 |
+
type: C-MTEB/CLSClusteringP2P
|
118 |
+
metrics:
|
119 |
+
- type: v_measure
|
120 |
+
value: 58.53706905558472
|
121 |
+
- type: v_measure_std
|
122 |
+
value: 1.3628784531981595
|
123 |
+
- type: main_score
|
124 |
+
value: 58.53706905558472
|
125 |
+
task:
|
126 |
+
type: Clustering
|
127 |
+
- dataset:
|
128 |
+
config: default
|
129 |
+
name: MTEB CLSClusteringS2S
|
130 |
+
revision: None
|
131 |
+
split: test
|
132 |
+
type: C-MTEB/CLSClusteringS2S
|
133 |
+
metrics:
|
134 |
+
- type: v_measure
|
135 |
+
value: 54.70969139354621
|
136 |
+
- type: v_measure_std
|
137 |
+
value: 1.938384688132648
|
138 |
+
- type: main_score
|
139 |
+
value: 54.70969139354621
|
140 |
+
task:
|
141 |
+
type: Clustering
|
142 |
+
- dataset:
|
143 |
+
config: default
|
144 |
+
name: MTEB CMedQAv1
|
145 |
+
revision: None
|
146 |
+
split: test
|
147 |
+
type: C-MTEB/CMedQAv1-reranking
|
148 |
+
metrics:
|
149 |
+
- type: map
|
150 |
+
value: 87.79521046311835
|
151 |
+
- type: mrr
|
152 |
+
value: 90.01547619047618
|
153 |
+
- type: main_score
|
154 |
+
value: 87.79521046311835
|
155 |
+
task:
|
156 |
+
type: Reranking
|
157 |
+
- dataset:
|
158 |
+
config: default
|
159 |
+
name: MTEB CMedQAv2
|
160 |
+
revision: None
|
161 |
+
split: test
|
162 |
+
type: C-MTEB/CMedQAv2-reranking
|
163 |
+
metrics:
|
164 |
+
- type: map
|
165 |
+
value: 87.89916670870878
|
166 |
+
- type: mrr
|
167 |
+
value: 89.92595238095238
|
168 |
+
- type: main_score
|
169 |
+
value: 87.89916670870878
|
170 |
+
task:
|
171 |
+
type: Reranking
|
172 |
+
- dataset:
|
173 |
+
config: default
|
174 |
+
name: MTEB CmedqaRetrieval
|
175 |
+
revision: None
|
176 |
+
split: dev
|
177 |
+
type: C-MTEB/CmedqaRetrieval
|
178 |
+
metrics:
|
179 |
+
- type: map_at_1
|
180 |
+
value: 25.444
|
181 |
+
- type: map_at_10
|
182 |
+
value: 37.763999999999996
|
183 |
+
- type: map_at_100
|
184 |
+
value: 39.641999999999996
|
185 |
+
- type: map_at_1000
|
186 |
+
value: 39.756
|
187 |
+
- type: map_at_3
|
188 |
+
value: 33.742
|
189 |
+
- type: map_at_5
|
190 |
+
value: 35.906
|
191 |
+
- type: mrr_at_1
|
192 |
+
value: 38.71
|
193 |
+
- type: mrr_at_10
|
194 |
+
value: 46.744
|
195 |
+
- type: mrr_at_100
|
196 |
+
value: 47.745
|
197 |
+
- type: mrr_at_1000
|
198 |
+
value: 47.791
|
199 |
+
- type: mrr_at_3
|
200 |
+
value: 44.324000000000005
|
201 |
+
- type: mrr_at_5
|
202 |
+
value: 45.696
|
203 |
+
- type: ndcg_at_1
|
204 |
+
value: 38.71
|
205 |
+
- type: ndcg_at_10
|
206 |
+
value: 44.285000000000004
|
207 |
+
- type: ndcg_at_100
|
208 |
+
value: 51.69200000000001
|
209 |
+
- type: ndcg_at_1000
|
210 |
+
value: 53.669999999999995
|
211 |
+
- type: ndcg_at_3
|
212 |
+
value: 39.273
|
213 |
+
- type: ndcg_at_5
|
214 |
+
value: 41.254000000000005
|
215 |
+
- type: precision_at_1
|
216 |
+
value: 38.71
|
217 |
+
- type: precision_at_10
|
218 |
+
value: 9.825000000000001
|
219 |
+
- type: precision_at_100
|
220 |
+
value: 1.583
|
221 |
+
- type: precision_at_1000
|
222 |
+
value: 0.183
|
223 |
+
- type: precision_at_3
|
224 |
+
value: 22.197
|
225 |
+
- type: precision_at_5
|
226 |
+
value: 16.019
|
227 |
+
- type: recall_at_1
|
228 |
+
value: 25.444
|
229 |
+
- type: recall_at_10
|
230 |
+
value: 54.535999999999994
|
231 |
+
- type: recall_at_100
|
232 |
+
value: 85.307
|
233 |
+
- type: recall_at_1000
|
234 |
+
value: 98.473
|
235 |
+
- type: recall_at_3
|
236 |
+
value: 39.274
|
237 |
+
- type: recall_at_5
|
238 |
+
value: 45.580999999999996
|
239 |
+
- type: main_score
|
240 |
+
value: 44.285000000000004
|
241 |
+
task:
|
242 |
+
type: Retrieval
|
243 |
+
- dataset:
|
244 |
+
config: default
|
245 |
+
name: MTEB Cmnli
|
246 |
+
revision: None
|
247 |
+
split: validation
|
248 |
+
type: C-MTEB/CMNLI
|
249 |
+
metrics:
|
250 |
+
- type: cos_sim_accuracy
|
251 |
+
value: 89.58508719182201
|
252 |
+
- type: cos_sim_accuracy_threshold
|
253 |
+
value: 97.09511288861569
|
254 |
+
- type: cos_sim_ap
|
255 |
+
value: 95.12338246323735
|
256 |
+
- type: cos_sim_f1
|
257 |
+
value: 90.19211324570271
|
258 |
+
- type: cos_sim_f1_threshold
|
259 |
+
value: 97.02014138938755
|
260 |
+
- type: cos_sim_precision
|
261 |
+
value: 86.80795847750865
|
262 |
+
- type: cos_sim_recall
|
263 |
+
value: 93.85083002104278
|
264 |
+
- type: dot_accuracy
|
265 |
+
value: 89.58508719182201
|
266 |
+
- type: dot_accuracy_threshold
|
267 |
+
value: 97.0951128886157
|
268 |
+
- type: dot_ap
|
269 |
+
value: 95.13959275940286
|
270 |
+
- type: dot_f1
|
271 |
+
value: 90.19211324570271
|
272 |
+
- type: dot_f1_threshold
|
273 |
+
value: 97.02014138938755
|
274 |
+
- type: dot_precision
|
275 |
+
value: 86.80795847750865
|
276 |
+
- type: dot_recall
|
277 |
+
value: 93.85083002104278
|
278 |
+
- type: euclidean_accuracy
|
279 |
+
value: 89.58508719182201
|
280 |
+
- type: euclidean_accuracy_threshold
|
281 |
+
value: 24.103473235790947
|
282 |
+
- type: euclidean_ap
|
283 |
+
value: 95.12338246323735
|
284 |
+
- type: euclidean_f1
|
285 |
+
value: 90.19211324570271
|
286 |
+
- type: euclidean_f1_threshold
|
287 |
+
value: 24.412531977088996
|
288 |
+
- type: euclidean_precision
|
289 |
+
value: 86.80795847750865
|
290 |
+
- type: euclidean_recall
|
291 |
+
value: 93.85083002104278
|
292 |
+
- type: manhattan_accuracy
|
293 |
+
value: 89.57306073361396
|
294 |
+
- type: manhattan_accuracy_threshold
|
295 |
+
value: 729.1211254739587
|
296 |
+
- type: manhattan_ap
|
297 |
+
value: 95.12388319543341
|
298 |
+
- type: manhattan_f1
|
299 |
+
value: 90.13956654941563
|
300 |
+
- type: manhattan_f1_threshold
|
301 |
+
value: 733.155723492131
|
302 |
+
- type: manhattan_precision
|
303 |
+
value: 87.56613756613757
|
304 |
+
- type: manhattan_recall
|
305 |
+
value: 92.8688332943652
|
306 |
+
- type: max_accuracy
|
307 |
+
value: 89.58508719182201
|
308 |
+
- type: max_ap
|
309 |
+
value: 95.13959275940286
|
310 |
+
- type: max_f1
|
311 |
+
value: 90.19211324570271
|
312 |
+
task:
|
313 |
+
type: PairClassification
|
314 |
+
- dataset:
|
315 |
+
config: default
|
316 |
+
name: MTEB CovidRetrieval
|
317 |
+
revision: None
|
318 |
+
split: dev
|
319 |
+
type: C-MTEB/CovidRetrieval
|
320 |
+
metrics:
|
321 |
+
- type: map_at_1
|
322 |
+
value: 75.29
|
323 |
+
- type: map_at_10
|
324 |
+
value: 82.392
|
325 |
+
- type: map_at_100
|
326 |
+
value: 82.581
|
327 |
+
- type: map_at_1000
|
328 |
+
value: 82.585
|
329 |
+
- type: map_at_3
|
330 |
+
value: 80.88300000000001
|
331 |
+
- type: map_at_5
|
332 |
+
value: 81.71199999999999
|
333 |
+
- type: mrr_at_1
|
334 |
+
value: 75.553
|
335 |
+
- type: mrr_at_10
|
336 |
+
value: 82.422
|
337 |
+
- type: mrr_at_100
|
338 |
+
value: 82.6
|
339 |
+
- type: mrr_at_1000
|
340 |
+
value: 82.604
|
341 |
+
- type: mrr_at_3
|
342 |
+
value: 80.927
|
343 |
+
- type: mrr_at_5
|
344 |
+
value: 81.765
|
345 |
+
- type: ndcg_at_1
|
346 |
+
value: 75.44800000000001
|
347 |
+
- type: ndcg_at_10
|
348 |
+
value: 85.655
|
349 |
+
- type: ndcg_at_100
|
350 |
+
value: 86.435
|
351 |
+
- type: ndcg_at_1000
|
352 |
+
value: 86.541
|
353 |
+
- type: ndcg_at_3
|
354 |
+
value: 82.60300000000001
|
355 |
+
- type: ndcg_at_5
|
356 |
+
value: 84.062
|
357 |
+
- type: precision_at_1
|
358 |
+
value: 75.44800000000001
|
359 |
+
- type: precision_at_10
|
360 |
+
value: 9.663
|
361 |
+
- type: precision_at_100
|
362 |
+
value: 1.002
|
363 |
+
- type: precision_at_1000
|
364 |
+
value: 0.101
|
365 |
+
- type: precision_at_3
|
366 |
+
value: 29.329
|
367 |
+
- type: precision_at_5
|
368 |
+
value: 18.314
|
369 |
+
- type: recall_at_1
|
370 |
+
value: 75.29
|
371 |
+
- type: recall_at_10
|
372 |
+
value: 95.838
|
373 |
+
- type: recall_at_100
|
374 |
+
value: 99.157
|
375 |
+
- type: recall_at_1000
|
376 |
+
value: 100.0
|
377 |
+
- type: recall_at_3
|
378 |
+
value: 87.566
|
379 |
+
- type: recall_at_5
|
380 |
+
value: 90.991
|
381 |
+
- type: main_score
|
382 |
+
value: 85.655
|
383 |
+
task:
|
384 |
+
type: Retrieval
|
385 |
+
- dataset:
|
386 |
+
config: default
|
387 |
+
name: MTEB DuRetrieval
|
388 |
+
revision: None
|
389 |
+
split: dev
|
390 |
+
type: C-MTEB/DuRetrieval
|
391 |
+
metrics:
|
392 |
+
- type: map_at_1
|
393 |
+
value: 27.584999999999997
|
394 |
+
- type: map_at_10
|
395 |
+
value: 85.112
|
396 |
+
- type: map_at_100
|
397 |
+
value: 87.632
|
398 |
+
- type: map_at_1000
|
399 |
+
value: 87.654
|
400 |
+
- type: map_at_3
|
401 |
+
value: 59.504999999999995
|
402 |
+
- type: map_at_5
|
403 |
+
value: 75.029
|
404 |
+
- type: mrr_at_1
|
405 |
+
value: 93.30000000000001
|
406 |
+
- type: mrr_at_10
|
407 |
+
value: 95.44200000000001
|
408 |
+
- type: mrr_at_100
|
409 |
+
value: 95.498
|
410 |
+
- type: mrr_at_1000
|
411 |
+
value: 95.5
|
412 |
+
- type: mrr_at_3
|
413 |
+
value: 95.258
|
414 |
+
- type: mrr_at_5
|
415 |
+
value: 95.36099999999999
|
416 |
+
- type: ndcg_at_1
|
417 |
+
value: 93.30000000000001
|
418 |
+
- type: ndcg_at_10
|
419 |
+
value: 91.086
|
420 |
+
- type: ndcg_at_100
|
421 |
+
value: 93.089
|
422 |
+
- type: ndcg_at_1000
|
423 |
+
value: 93.297
|
424 |
+
- type: ndcg_at_3
|
425 |
+
value: 90.432
|
426 |
+
- type: ndcg_at_5
|
427 |
+
value: 89.361
|
428 |
+
- type: precision_at_1
|
429 |
+
value: 93.30000000000001
|
430 |
+
- type: precision_at_10
|
431 |
+
value: 43.21
|
432 |
+
- type: precision_at_100
|
433 |
+
value: 4.857
|
434 |
+
- type: precision_at_1000
|
435 |
+
value: 0.49
|
436 |
+
- type: precision_at_3
|
437 |
+
value: 81.0
|
438 |
+
- type: precision_at_5
|
439 |
+
value: 68.28999999999999
|
440 |
+
- type: recall_at_1
|
441 |
+
value: 27.584999999999997
|
442 |
+
- type: recall_at_10
|
443 |
+
value: 91.73599999999999
|
444 |
+
- type: recall_at_100
|
445 |
+
value: 98.648
|
446 |
+
- type: recall_at_1000
|
447 |
+
value: 99.751
|
448 |
+
- type: recall_at_3
|
449 |
+
value: 61.378
|
450 |
+
- type: recall_at_5
|
451 |
+
value: 78.672
|
452 |
+
- type: main_score
|
453 |
+
value: 91.086
|
454 |
+
task:
|
455 |
+
type: Retrieval
|
456 |
+
- dataset:
|
457 |
+
config: default
|
458 |
+
name: MTEB EcomRetrieval
|
459 |
+
revision: None
|
460 |
+
split: dev
|
461 |
+
type: C-MTEB/EcomRetrieval
|
462 |
+
metrics:
|
463 |
+
- type: map_at_1
|
464 |
+
value: 55.1
|
465 |
+
- type: map_at_10
|
466 |
+
value: 65.268
|
467 |
+
- type: map_at_100
|
468 |
+
value: 65.756
|
469 |
+
- type: map_at_1000
|
470 |
+
value: 65.765
|
471 |
+
- type: map_at_3
|
472 |
+
value: 63.132999999999996
|
473 |
+
- type: map_at_5
|
474 |
+
value: 64.25800000000001
|
475 |
+
- type: mrr_at_1
|
476 |
+
value: 55.1
|
477 |
+
- type: mrr_at_10
|
478 |
+
value: 65.268
|
479 |
+
- type: mrr_at_100
|
480 |
+
value: 65.756
|
481 |
+
- type: mrr_at_1000
|
482 |
+
value: 65.765
|
483 |
+
- type: mrr_at_3
|
484 |
+
value: 63.132999999999996
|
485 |
+
- type: mrr_at_5
|
486 |
+
value: 64.25800000000001
|
487 |
+
- type: ndcg_at_1
|
488 |
+
value: 55.1
|
489 |
+
- type: ndcg_at_10
|
490 |
+
value: 70.15599999999999
|
491 |
+
- type: ndcg_at_100
|
492 |
+
value: 72.368
|
493 |
+
- type: ndcg_at_1000
|
494 |
+
value: 72.635
|
495 |
+
- type: ndcg_at_3
|
496 |
+
value: 65.697
|
497 |
+
- type: ndcg_at_5
|
498 |
+
value: 67.741
|
499 |
+
- type: precision_at_1
|
500 |
+
value: 55.1
|
501 |
+
- type: precision_at_10
|
502 |
+
value: 8.55
|
503 |
+
- type: precision_at_100
|
504 |
+
value: 0.955
|
505 |
+
- type: precision_at_1000
|
506 |
+
value: 0.098
|
507 |
+
- type: precision_at_3
|
508 |
+
value: 24.367
|
509 |
+
- type: precision_at_5
|
510 |
+
value: 15.620000000000001
|
511 |
+
- type: recall_at_1
|
512 |
+
value: 55.1
|
513 |
+
- type: recall_at_10
|
514 |
+
value: 85.5
|
515 |
+
- type: recall_at_100
|
516 |
+
value: 95.5
|
517 |
+
- type: recall_at_1000
|
518 |
+
value: 97.6
|
519 |
+
- type: recall_at_3
|
520 |
+
value: 73.1
|
521 |
+
- type: recall_at_5
|
522 |
+
value: 78.10000000000001
|
523 |
+
- type: main_score
|
524 |
+
value: 70.15599999999999
|
525 |
+
task:
|
526 |
+
type: Retrieval
|
527 |
+
- dataset:
|
528 |
+
config: default
|
529 |
+
name: MTEB IFlyTek
|
530 |
+
revision: None
|
531 |
+
split: validation
|
532 |
+
type: C-MTEB/IFlyTek-classification
|
533 |
+
metrics:
|
534 |
+
- type: accuracy
|
535 |
+
value: 52.743362831858406
|
536 |
+
- type: accuracy_stderr
|
537 |
+
value: 0.4449967616714387
|
538 |
+
- type: f1
|
539 |
+
value: 40.13427504900375
|
540 |
+
- type: f1_stderr
|
541 |
+
value: 0.17565290177989018
|
542 |
+
- type: main_score
|
543 |
+
value: 52.743362831858406
|
544 |
+
task:
|
545 |
+
type: Classification
|
546 |
+
- dataset:
|
547 |
+
config: default
|
548 |
+
name: MTEB JDReview
|
549 |
+
revision: None
|
550 |
+
split: test
|
551 |
+
type: C-MTEB/JDReview-classification
|
552 |
+
metrics:
|
553 |
+
- type: accuracy
|
554 |
+
value: 90.13133208255161
|
555 |
+
- type: accuracy_stderr
|
556 |
+
value: 0.9647249630155678
|
557 |
+
- type: ap
|
558 |
+
value: 62.848199712439765
|
559 |
+
- type: ap_stderr
|
560 |
+
value: 1.986859492917626
|
561 |
+
- type: f1
|
562 |
+
value: 85.48543445690254
|
563 |
+
- type: f1_stderr
|
564 |
+
value: 1.0490059319804828
|
565 |
+
- type: main_score
|
566 |
+
value: 90.13133208255161
|
567 |
+
task:
|
568 |
+
type: Classification
|
569 |
+
- dataset:
|
570 |
+
config: default
|
571 |
+
name: MTEB LCQMC
|
572 |
+
revision: None
|
573 |
+
split: test
|
574 |
+
type: C-MTEB/LCQMC
|
575 |
+
metrics:
|
576 |
+
- type: cosine_pearson
|
577 |
+
value: 77.75677384428634
|
578 |
+
- type: cosine_spearman
|
579 |
+
value: 78.86284859566986
|
580 |
+
- type: manhattan_pearson
|
581 |
+
value: 79.8032754323316
|
582 |
+
- type: manhattan_spearman
|
583 |
+
value: 78.85558562163624
|
584 |
+
- type: euclidean_pearson
|
585 |
+
value: 79.82552324704292
|
586 |
+
- type: euclidean_spearman
|
587 |
+
value: 78.86284859566986
|
588 |
+
- type: main_score
|
589 |
+
value: 78.86284859566986
|
590 |
+
task:
|
591 |
+
type: STS
|
592 |
+
- dataset:
|
593 |
+
config: default
|
594 |
+
name: MTEB MMarcoReranking
|
595 |
+
revision: None
|
596 |
+
split: dev
|
597 |
+
type: C-MTEB/Mmarco-reranking
|
598 |
+
metrics:
|
599 |
+
- type: map
|
600 |
+
value: 30.737025407798523
|
601 |
+
- type: mrr
|
602 |
+
value: 29.26111111111111
|
603 |
+
- type: main_score
|
604 |
+
value: 30.737025407798523
|
605 |
+
task:
|
606 |
+
type: Reranking
|
607 |
+
- dataset:
|
608 |
+
config: default
|
609 |
+
name: MTEB MMarcoRetrieval
|
610 |
+
revision: None
|
611 |
+
split: dev
|
612 |
+
type: C-MTEB/MMarcoRetrieval
|
613 |
+
metrics:
|
614 |
+
- type: map_at_1
|
615 |
+
value: 70.244
|
616 |
+
- type: map_at_10
|
617 |
+
value: 78.975
|
618 |
+
- type: map_at_100
|
619 |
+
value: 79.253
|
620 |
+
- type: map_at_1000
|
621 |
+
value: 79.26100000000001
|
622 |
+
- type: map_at_3
|
623 |
+
value: 77.363
|
624 |
+
- type: map_at_5
|
625 |
+
value: 78.364
|
626 |
+
- type: mrr_at_1
|
627 |
+
value: 72.521
|
628 |
+
- type: mrr_at_10
|
629 |
+
value: 79.514
|
630 |
+
- type: mrr_at_100
|
631 |
+
value: 79.75
|
632 |
+
- type: mrr_at_1000
|
633 |
+
value: 79.757
|
634 |
+
- type: mrr_at_3
|
635 |
+
value: 78.095
|
636 |
+
- type: mrr_at_5
|
637 |
+
value: 78.987
|
638 |
+
- type: ndcg_at_1
|
639 |
+
value: 72.521
|
640 |
+
- type: ndcg_at_10
|
641 |
+
value: 82.395
|
642 |
+
- type: ndcg_at_100
|
643 |
+
value: 83.554
|
644 |
+
- type: ndcg_at_1000
|
645 |
+
value: 83.774
|
646 |
+
- type: ndcg_at_3
|
647 |
+
value: 79.341
|
648 |
+
- type: ndcg_at_5
|
649 |
+
value: 81.036
|
650 |
+
- type: precision_at_1
|
651 |
+
value: 72.521
|
652 |
+
- type: precision_at_10
|
653 |
+
value: 9.812
|
654 |
+
- type: precision_at_100
|
655 |
+
value: 1.038
|
656 |
+
- type: precision_at_1000
|
657 |
+
value: 0.106
|
658 |
+
- type: precision_at_3
|
659 |
+
value: 29.694
|
660 |
+
- type: precision_at_5
|
661 |
+
value: 18.712999999999997
|
662 |
+
- type: recall_at_1
|
663 |
+
value: 70.244
|
664 |
+
- type: recall_at_10
|
665 |
+
value: 92.35
|
666 |
+
- type: recall_at_100
|
667 |
+
value: 97.419
|
668 |
+
- type: recall_at_1000
|
669 |
+
value: 99.16199999999999
|
670 |
+
- type: recall_at_3
|
671 |
+
value: 84.303
|
672 |
+
- type: recall_at_5
|
673 |
+
value: 88.325
|
674 |
+
- type: main_score
|
675 |
+
value: 82.395
|
676 |
+
task:
|
677 |
+
type: Retrieval
|
678 |
+
- dataset:
|
679 |
+
config: zh-CN
|
680 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
681 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
682 |
+
split: test
|
683 |
+
type: mteb/amazon_massive_intent
|
684 |
+
metrics:
|
685 |
+
- type: accuracy
|
686 |
+
value: 76.3752521856086
|
687 |
+
- type: accuracy_stderr
|
688 |
+
value: 1.3911220977886072
|
689 |
+
- type: f1
|
690 |
+
value: 73.38330839246518
|
691 |
+
- type: f1_stderr
|
692 |
+
value: 0.9864886479418102
|
693 |
+
- type: main_score
|
694 |
+
value: 76.3752521856086
|
695 |
+
task:
|
696 |
+
type: Classification
|
697 |
+
- dataset:
|
698 |
+
config: zh-CN
|
699 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
700 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
701 |
+
split: test
|
702 |
+
type: mteb/amazon_massive_scenario
|
703 |
+
metrics:
|
704 |
+
- type: accuracy
|
705 |
+
value: 81.8022864828514
|
706 |
+
- type: accuracy_stderr
|
707 |
+
value: 1.4060452754762354
|
708 |
+
- type: f1
|
709 |
+
value: 80.85164585310973
|
710 |
+
- type: f1_stderr
|
711 |
+
value: 1.2664399398388577
|
712 |
+
- type: main_score
|
713 |
+
value: 81.8022864828514
|
714 |
+
task:
|
715 |
+
type: Classification
|
716 |
+
- dataset:
|
717 |
+
config: default
|
718 |
+
name: MTEB MedicalRetrieval
|
719 |
+
revision: None
|
720 |
+
split: dev
|
721 |
+
type: C-MTEB/MedicalRetrieval
|
722 |
+
metrics:
|
723 |
+
- type: map_at_1
|
724 |
+
value: 57.199999999999996
|
725 |
+
- type: map_at_10
|
726 |
+
value: 63.346999999999994
|
727 |
+
- type: map_at_100
|
728 |
+
value: 63.852
|
729 |
+
- type: map_at_1000
|
730 |
+
value: 63.88700000000001
|
731 |
+
- type: map_at_3
|
732 |
+
value: 61.967000000000006
|
733 |
+
- type: map_at_5
|
734 |
+
value: 62.66199999999999
|
735 |
+
- type: mrr_at_1
|
736 |
+
value: 57.3
|
737 |
+
- type: mrr_at_10
|
738 |
+
value: 63.397000000000006
|
739 |
+
- type: mrr_at_100
|
740 |
+
value: 63.902
|
741 |
+
- type: mrr_at_1000
|
742 |
+
value: 63.937
|
743 |
+
- type: mrr_at_3
|
744 |
+
value: 62.017
|
745 |
+
- type: mrr_at_5
|
746 |
+
value: 62.712
|
747 |
+
- type: ndcg_at_1
|
748 |
+
value: 57.199999999999996
|
749 |
+
- type: ndcg_at_10
|
750 |
+
value: 66.38300000000001
|
751 |
+
- type: ndcg_at_100
|
752 |
+
value: 69.267
|
753 |
+
- type: ndcg_at_1000
|
754 |
+
value: 70.233
|
755 |
+
- type: ndcg_at_3
|
756 |
+
value: 63.44499999999999
|
757 |
+
- type: ndcg_at_5
|
758 |
+
value: 64.71000000000001
|
759 |
+
- type: precision_at_1
|
760 |
+
value: 57.199999999999996
|
761 |
+
- type: precision_at_10
|
762 |
+
value: 7.6
|
763 |
+
- type: precision_at_100
|
764 |
+
value: 0.905
|
765 |
+
- type: precision_at_1000
|
766 |
+
value: 0.098
|
767 |
+
- type: precision_at_3
|
768 |
+
value: 22.567
|
769 |
+
- type: precision_at_5
|
770 |
+
value: 14.16
|
771 |
+
- type: recall_at_1
|
772 |
+
value: 57.199999999999996
|
773 |
+
- type: recall_at_10
|
774 |
+
value: 76.0
|
775 |
+
- type: recall_at_100
|
776 |
+
value: 90.5
|
777 |
+
- type: recall_at_1000
|
778 |
+
value: 98.2
|
779 |
+
- type: recall_at_3
|
780 |
+
value: 67.7
|
781 |
+
- type: recall_at_5
|
782 |
+
value: 70.8
|
783 |
+
- type: main_score
|
784 |
+
value: 66.38300000000001
|
785 |
+
task:
|
786 |
+
type: Retrieval
|
787 |
+
- dataset:
|
788 |
+
config: default
|
789 |
+
name: MTEB MultilingualSentiment
|
790 |
+
revision: None
|
791 |
+
split: validation
|
792 |
+
type: C-MTEB/MultilingualSentiment-classification
|
793 |
+
metrics:
|
794 |
+
- type: accuracy
|
795 |
+
value: 80.12333333333335
|
796 |
+
- type: accuracy_stderr
|
797 |
+
value: 0.31377628265303376
|
798 |
+
- type: f1
|
799 |
+
value: 80.26166732998303
|
800 |
+
- type: f1_stderr
|
801 |
+
value: 0.2836457609943486
|
802 |
+
- type: main_score
|
803 |
+
value: 80.12333333333335
|
804 |
+
task:
|
805 |
+
type: Classification
|
806 |
+
- dataset:
|
807 |
+
config: default
|
808 |
+
name: MTEB Ocnli
|
809 |
+
revision: None
|
810 |
+
split: validation
|
811 |
+
type: C-MTEB/OCNLI
|
812 |
+
metrics:
|
813 |
+
- type: cos_sim_accuracy
|
814 |
+
value: 87.54737412019492
|
815 |
+
- type: cos_sim_accuracy_threshold
|
816 |
+
value: 96.99121475650863
|
817 |
+
- type: cos_sim_ap
|
818 |
+
value: 91.71816430648396
|
819 |
+
- type: cos_sim_f1
|
820 |
+
value: 88.27655310621243
|
821 |
+
- type: cos_sim_f1_threshold
|
822 |
+
value: 96.8697507135398
|
823 |
+
- type: cos_sim_precision
|
824 |
+
value: 83.98474737845567
|
825 |
+
- type: cos_sim_recall
|
826 |
+
value: 93.03062302006336
|
827 |
+
- type: dot_accuracy
|
828 |
+
value: 87.54737412019492
|
829 |
+
- type: dot_accuracy_threshold
|
830 |
+
value: 96.99121475650863
|
831 |
+
- type: dot_ap
|
832 |
+
value: 91.71816430648396
|
833 |
+
- type: dot_f1
|
834 |
+
value: 88.27655310621243
|
835 |
+
- type: dot_f1_threshold
|
836 |
+
value: 96.86975071353979
|
837 |
+
- type: dot_precision
|
838 |
+
value: 83.98474737845567
|
839 |
+
- type: dot_recall
|
840 |
+
value: 93.03062302006336
|
841 |
+
- type: euclidean_accuracy
|
842 |
+
value: 87.54737412019492
|
843 |
+
- type: euclidean_accuracy_threshold
|
844 |
+
value: 24.530733065589622
|
845 |
+
- type: euclidean_ap
|
846 |
+
value: 91.71816430648396
|
847 |
+
- type: euclidean_f1
|
848 |
+
value: 88.27655310621243
|
849 |
+
- type: euclidean_f1_threshold
|
850 |
+
value: 25.020988098238107
|
851 |
+
- type: euclidean_precision
|
852 |
+
value: 83.98474737845567
|
853 |
+
- type: euclidean_recall
|
854 |
+
value: 93.03062302006336
|
855 |
+
- type: manhattan_accuracy
|
856 |
+
value: 87.27666486193829
|
857 |
+
- type: manhattan_accuracy_threshold
|
858 |
+
value: 752.4905438529156
|
859 |
+
- type: manhattan_ap
|
860 |
+
value: 91.70647280240597
|
861 |
+
- type: manhattan_f1
|
862 |
+
value: 88.08920425747591
|
863 |
+
- type: manhattan_f1_threshold
|
864 |
+
value: 752.4905438529156
|
865 |
+
- type: manhattan_precision
|
866 |
+
value: 84.69785575048732
|
867 |
+
- type: manhattan_recall
|
868 |
+
value: 91.76346356916578
|
869 |
+
- type: max_accuracy
|
870 |
+
value: 87.54737412019492
|
871 |
+
- type: max_ap
|
872 |
+
value: 91.71816430648396
|
873 |
+
- type: max_f1
|
874 |
+
value: 88.27655310621243
|
875 |
+
task:
|
876 |
+
type: PairClassification
|
877 |
+
- dataset:
|
878 |
+
config: default
|
879 |
+
name: MTEB OnlineShopping
|
880 |
+
revision: None
|
881 |
+
split: test
|
882 |
+
type: C-MTEB/OnlineShopping-classification
|
883 |
+
metrics:
|
884 |
+
- type: accuracy
|
885 |
+
value: 94.46999999999998
|
886 |
+
- type: accuracy_stderr
|
887 |
+
value: 0.2865309756378883
|
888 |
+
- type: ap
|
889 |
+
value: 93.00417328431348
|
890 |
+
- type: ap_stderr
|
891 |
+
value: 0.5383352662551945
|
892 |
+
- type: f1
|
893 |
+
value: 94.4618263222835
|
894 |
+
- type: f1_stderr
|
895 |
+
value: 0.2840342094212124
|
896 |
+
- type: main_score
|
897 |
+
value: 94.46999999999998
|
898 |
+
task:
|
899 |
+
type: Classification
|
900 |
+
- dataset:
|
901 |
+
config: default
|
902 |
+
name: MTEB PAWSX
|
903 |
+
revision: None
|
904 |
+
split: test
|
905 |
+
type: C-MTEB/PAWSX
|
906 |
+
metrics:
|
907 |
+
- type: cosine_pearson
|
908 |
+
value: 46.85211982536296
|
909 |
+
- type: cosine_spearman
|
910 |
+
value: 49.917839688145996
|
911 |
+
- type: manhattan_pearson
|
912 |
+
value: 49.66820248148123
|
913 |
+
- type: manhattan_spearman
|
914 |
+
value: 49.94013555794742
|
915 |
+
- type: euclidean_pearson
|
916 |
+
value: 49.63608491973345
|
917 |
+
- type: euclidean_spearman
|
918 |
+
value: 49.917839688145996
|
919 |
+
- type: main_score
|
920 |
+
value: 49.917839688145996
|
921 |
+
task:
|
922 |
+
type: STS
|
923 |
+
- dataset:
|
924 |
+
config: default
|
925 |
+
name: MTEB QBQTC
|
926 |
+
revision: None
|
927 |
+
split: test
|
928 |
+
type: C-MTEB/QBQTC
|
929 |
+
metrics:
|
930 |
+
- type: cosine_pearson
|
931 |
+
value: 55.18355221701257
|
932 |
+
- type: cosine_spearman
|
933 |
+
value: 54.67390932826382
|
934 |
+
- type: manhattan_pearson
|
935 |
+
value: 53.32847494683504
|
936 |
+
- type: manhattan_spearman
|
937 |
+
value: 54.61660160532041
|
938 |
+
- type: euclidean_pearson
|
939 |
+
value: 53.405599174765364
|
940 |
+
- type: euclidean_spearman
|
941 |
+
value: 54.67390932826382
|
942 |
+
- type: main_score
|
943 |
+
value: 54.67390932826382
|
944 |
+
task:
|
945 |
+
type: STS
|
946 |
+
- dataset:
|
947 |
+
config: zh
|
948 |
+
name: MTEB STS22 (zh)
|
949 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
950 |
+
split: test
|
951 |
+
type: mteb/sts22-crosslingual-sts
|
952 |
+
metrics:
|
953 |
+
- type: cosine_pearson
|
954 |
+
value: 67.89319522460808
|
955 |
+
- type: cosine_spearman
|
956 |
+
value: 68.98524514928238
|
957 |
+
- type: manhattan_pearson
|
958 |
+
value: 67.65257700660463
|
959 |
+
- type: manhattan_spearman
|
960 |
+
value: 69.17199742136434
|
961 |
+
- type: euclidean_pearson
|
962 |
+
value: 67.52535570217756
|
963 |
+
- type: euclidean_spearman
|
964 |
+
value: 68.98524514928238
|
965 |
+
- type: main_score
|
966 |
+
value: 68.98524514928238
|
967 |
+
task:
|
968 |
+
type: STS
|
969 |
+
- dataset:
|
970 |
+
config: default
|
971 |
+
name: MTEB STSB
|
972 |
+
revision: None
|
973 |
+
split: test
|
974 |
+
type: C-MTEB/STSB
|
975 |
+
metrics:
|
976 |
+
- type: cosine_pearson
|
977 |
+
value: 75.4871803618505
|
978 |
+
- type: cosine_spearman
|
979 |
+
value: 76.17471665593993
|
980 |
+
- type: manhattan_pearson
|
981 |
+
value: 75.73597640243183
|
982 |
+
- type: manhattan_spearman
|
983 |
+
value: 76.20048941210949
|
984 |
+
- type: euclidean_pearson
|
985 |
+
value: 75.66172628182565
|
986 |
+
- type: euclidean_spearman
|
987 |
+
value: 76.17471665593993
|
988 |
+
- type: main_score
|
989 |
+
value: 76.17471665593993
|
990 |
+
task:
|
991 |
+
type: STS
|
992 |
+
- dataset:
|
993 |
+
config: default
|
994 |
+
name: MTEB T2Reranking
|
995 |
+
revision: None
|
996 |
+
split: dev
|
997 |
+
type: C-MTEB/T2Reranking
|
998 |
+
metrics:
|
999 |
+
- type: map
|
1000 |
+
value: 67.45036855302303
|
1001 |
+
- type: mrr
|
1002 |
+
value: 78.15107441080697
|
1003 |
+
- type: main_score
|
1004 |
+
value: 67.45036855302303
|
1005 |
+
task:
|
1006 |
+
type: Reranking
|
1007 |
+
- dataset:
|
1008 |
+
config: default
|
1009 |
+
name: MTEB T2Retrieval
|
1010 |
+
revision: None
|
1011 |
+
split: dev
|
1012 |
+
type: C-MTEB/T2Retrieval
|
1013 |
+
metrics:
|
1014 |
+
- type: map_at_1
|
1015 |
+
value: 28.094
|
1016 |
+
- type: map_at_10
|
1017 |
+
value: 79.367
|
1018 |
+
- type: map_at_100
|
1019 |
+
value: 82.89800000000001
|
1020 |
+
- type: map_at_1000
|
1021 |
+
value: 82.953
|
1022 |
+
- type: map_at_3
|
1023 |
+
value: 55.782
|
1024 |
+
- type: map_at_5
|
1025 |
+
value: 68.667
|
1026 |
+
- type: mrr_at_1
|
1027 |
+
value: 91.237
|
1028 |
+
- type: mrr_at_10
|
1029 |
+
value: 93.399
|
1030 |
+
- type: mrr_at_100
|
1031 |
+
value: 93.479
|
1032 |
+
- type: mrr_at_1000
|
1033 |
+
value: 93.482
|
1034 |
+
- type: mrr_at_3
|
1035 |
+
value: 93.029
|
1036 |
+
- type: mrr_at_5
|
1037 |
+
value: 93.273
|
1038 |
+
- type: ndcg_at_1
|
1039 |
+
value: 91.237
|
1040 |
+
- type: ndcg_at_10
|
1041 |
+
value: 86.368
|
1042 |
+
- type: ndcg_at_100
|
1043 |
+
value: 89.637
|
1044 |
+
- type: ndcg_at_1000
|
1045 |
+
value: 90.16300000000001
|
1046 |
+
- type: ndcg_at_3
|
1047 |
+
value: 87.691
|
1048 |
+
- type: ndcg_at_5
|
1049 |
+
value: 86.462
|
1050 |
+
- type: precision_at_1
|
1051 |
+
value: 91.237
|
1052 |
+
- type: precision_at_10
|
1053 |
+
value: 42.841
|
1054 |
+
- type: precision_at_100
|
1055 |
+
value: 5.047
|
1056 |
+
- type: precision_at_1000
|
1057 |
+
value: 0.517
|
1058 |
+
- type: precision_at_3
|
1059 |
+
value: 76.708
|
1060 |
+
- type: precision_at_5
|
1061 |
+
value: 64.428
|
1062 |
+
- type: recall_at_1
|
1063 |
+
value: 28.094
|
1064 |
+
- type: recall_at_10
|
1065 |
+
value: 85.181
|
1066 |
+
- type: recall_at_100
|
1067 |
+
value: 95.953
|
1068 |
+
- type: recall_at_1000
|
1069 |
+
value: 98.63
|
1070 |
+
- type: recall_at_3
|
1071 |
+
value: 57.267999999999994
|
1072 |
+
- type: recall_at_5
|
1073 |
+
value: 71.75399999999999
|
1074 |
+
- type: main_score
|
1075 |
+
value: 86.368
|
1076 |
+
task:
|
1077 |
+
type: Retrieval
|
1078 |
+
- dataset:
|
1079 |
+
config: default
|
1080 |
+
name: MTEB TNews
|
1081 |
+
revision: None
|
1082 |
+
split: validation
|
1083 |
+
type: C-MTEB/TNews-classification
|
1084 |
+
metrics:
|
1085 |
+
- type: accuracy
|
1086 |
+
value: 55.482
|
1087 |
+
- type: accuracy_stderr
|
1088 |
+
value: 0.3268577672321692
|
1089 |
+
- type: f1
|
1090 |
+
value: 53.57211848235611
|
1091 |
+
- type: f1_stderr
|
1092 |
+
value: 0.3511138517262321
|
1093 |
+
- type: main_score
|
1094 |
+
value: 55.482
|
1095 |
+
task:
|
1096 |
+
type: Classification
|
1097 |
+
- dataset:
|
1098 |
+
config: default
|
1099 |
+
name: MTEB ThuNewsClusteringP2P
|
1100 |
+
revision: None
|
1101 |
+
split: test
|
1102 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
1103 |
+
metrics:
|
1104 |
+
- type: v_measure
|
1105 |
+
value: 79.44895384385426
|
1106 |
+
- type: v_measure_std
|
1107 |
+
value: 2.315777338929376
|
1108 |
+
- type: main_score
|
1109 |
+
value: 79.44895384385426
|
1110 |
+
task:
|
1111 |
+
type: Clustering
|
1112 |
+
- dataset:
|
1113 |
+
config: default
|
1114 |
+
name: MTEB ThuNewsClusteringS2S
|
1115 |
+
revision: None
|
1116 |
+
split: test
|
1117 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
1118 |
+
metrics:
|
1119 |
+
- type: v_measure
|
1120 |
+
value: 76.95904984506356
|
1121 |
+
- type: v_measure_std
|
1122 |
+
value: 2.244801218820472
|
1123 |
+
- type: main_score
|
1124 |
+
value: 76.95904984506356
|
1125 |
+
task:
|
1126 |
+
type: Clustering
|
1127 |
+
- dataset:
|
1128 |
+
config: default
|
1129 |
+
name: MTEB VideoRetrieval
|
1130 |
+
revision: None
|
1131 |
+
split: dev
|
1132 |
+
type: C-MTEB/VideoRetrieval
|
1133 |
+
metrics:
|
1134 |
+
- type: map_at_1
|
1135 |
+
value: 65.60000000000001
|
1136 |
+
- type: map_at_10
|
1137 |
+
value: 75.24499999999999
|
1138 |
+
- type: map_at_100
|
1139 |
+
value: 75.51
|
1140 |
+
- type: map_at_1000
|
1141 |
+
value: 75.519
|
1142 |
+
- type: map_at_3
|
1143 |
+
value: 73.68299999999999
|
1144 |
+
- type: map_at_5
|
1145 |
+
value: 74.638
|
1146 |
+
- type: mrr_at_1
|
1147 |
+
value: 65.60000000000001
|
1148 |
+
- type: mrr_at_10
|
1149 |
+
value: 75.24499999999999
|
1150 |
+
- type: mrr_at_100
|
1151 |
+
value: 75.51
|
1152 |
+
- type: mrr_at_1000
|
1153 |
+
value: 75.519
|
1154 |
+
- type: mrr_at_3
|
1155 |
+
value: 73.68299999999999
|
1156 |
+
- type: mrr_at_5
|
1157 |
+
value: 74.638
|
1158 |
+
- type: ndcg_at_1
|
1159 |
+
value: 65.60000000000001
|
1160 |
+
- type: ndcg_at_10
|
1161 |
+
value: 79.338
|
1162 |
+
- type: ndcg_at_100
|
1163 |
+
value: 80.585
|
1164 |
+
- type: ndcg_at_1000
|
1165 |
+
value: 80.772
|
1166 |
+
- type: ndcg_at_3
|
1167 |
+
value: 76.189
|
1168 |
+
- type: ndcg_at_5
|
1169 |
+
value: 77.915
|
1170 |
+
- type: precision_at_1
|
1171 |
+
value: 65.60000000000001
|
1172 |
+
- type: precision_at_10
|
1173 |
+
value: 9.19
|
1174 |
+
- type: precision_at_100
|
1175 |
+
value: 0.976
|
1176 |
+
- type: precision_at_1000
|
1177 |
+
value: 0.099
|
1178 |
+
- type: precision_at_3
|
1179 |
+
value: 27.800000000000004
|
1180 |
+
- type: precision_at_5
|
1181 |
+
value: 17.52
|
1182 |
+
- type: recall_at_1
|
1183 |
+
value: 65.60000000000001
|
1184 |
+
- type: recall_at_10
|
1185 |
+
value: 91.9
|
1186 |
+
- type: recall_at_100
|
1187 |
+
value: 97.6
|
1188 |
+
- type: recall_at_1000
|
1189 |
+
value: 99.0
|
1190 |
+
- type: recall_at_3
|
1191 |
+
value: 83.39999999999999
|
1192 |
+
- type: recall_at_5
|
1193 |
+
value: 87.6
|
1194 |
+
- type: main_score
|
1195 |
+
value: 79.338
|
1196 |
+
task:
|
1197 |
+
type: Retrieval
|
1198 |
+
- dataset:
|
1199 |
+
config: default
|
1200 |
+
name: MTEB Waimai
|
1201 |
+
revision: None
|
1202 |
+
split: test
|
1203 |
+
type: C-MTEB/waimai-classification
|
1204 |
+
metrics:
|
1205 |
+
- type: accuracy
|
1206 |
+
value: 89.9
|
1207 |
+
- type: accuracy_stderr
|
1208 |
+
value: 0.7861297602813425
|
1209 |
+
- type: ap
|
1210 |
+
value: 76.33068327298966
|
1211 |
+
- type: ap_stderr
|
1212 |
+
value: 1.6404446239337744
|
1213 |
+
- type: f1
|
1214 |
+
value: 88.66175970131309
|
1215 |
+
- type: f1_stderr
|
1216 |
+
value: 0.7269675835542363
|
1217 |
+
- type: main_score
|
1218 |
+
value: 89.9
|
1219 |
+
task:
|
1220 |
+
type: Classification
|
1221 |
+
tags:
|
1222 |
+
- mteb
|
1223 |
+
---
|
1224 |
+
# Quark-Emb-1.5B
|
1225 |
+
|
1226 |
+
- Chinese Text Embedding Model developed by Alibaba Quark-LLM Team. Details will be published later.
|