Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
|
3 |
+
datasets:
|
4 |
+
- Omartificial-Intelligence-Space/Arabic-stsb
|
5 |
+
- Omartificial-Intelligence-Space/Arabic-NLi-Pair-Class
|
6 |
+
language:
|
7 |
+
- ar
|
8 |
+
library_name: sentence-transformers
|
9 |
+
metrics:
|
10 |
+
- pearson_cosine
|
11 |
+
- spearman_cosine
|
12 |
+
- pearson_manhattan
|
13 |
+
- spearman_manhattan
|
14 |
+
- pearson_euclidean
|
15 |
+
- spearman_euclidean
|
16 |
+
- pearson_dot
|
17 |
+
- spearman_dot
|
18 |
+
- pearson_max
|
19 |
+
- spearman_max
|
20 |
+
pipeline_tag: sentence-similarity
|
21 |
+
tags:
|
22 |
+
- mteb
|
23 |
+
- sentence-transformers
|
24 |
+
- sentence-similarity
|
25 |
+
- feature-extraction
|
26 |
+
- generated_from_trainer
|
27 |
+
- dataset_size:947818
|
28 |
+
- loss:SoftmaxLoss
|
29 |
+
- loss:CosineSimilarityLoss
|
30 |
+
- transformers
|
31 |
+
model-index:
|
32 |
+
- name: Omartificial-Intelligence-Space/GATE-AraBert-v1
|
33 |
+
results:
|
34 |
+
- dataset:
|
35 |
+
config: ar-ar
|
36 |
+
name: MTEB STS17 (ar-ar)
|
37 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
38 |
+
split: test
|
39 |
+
type: mteb/sts17-crosslingual-sts
|
40 |
+
metrics:
|
41 |
+
- type: cosine_pearson
|
42 |
+
value: 82.06597171670848
|
43 |
+
- type: cosine_spearman
|
44 |
+
value: 82.7809395809498
|
45 |
+
- type: euclidean_pearson
|
46 |
+
value: 79.23996991139896
|
47 |
+
- type: euclidean_spearman
|
48 |
+
value: 81.5287595404711
|
49 |
+
- type: main_score
|
50 |
+
value: 82.7809395809498
|
51 |
+
- type: manhattan_pearson
|
52 |
+
value: 78.95407006608013
|
53 |
+
- type: manhattan_spearman
|
54 |
+
value: 81.15109493737467
|
55 |
+
task:
|
56 |
+
type: STS
|
57 |
+
- dataset:
|
58 |
+
config: ar
|
59 |
+
name: MTEB STS22.v2 (ar)
|
60 |
+
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
|
61 |
+
split: test
|
62 |
+
type: mteb/sts22-crosslingual-sts
|
63 |
+
metrics:
|
64 |
+
- type: cosine_pearson
|
65 |
+
value: 54.912880452465004
|
66 |
+
- type: cosine_spearman
|
67 |
+
value: 63.09788380910325
|
68 |
+
- type: euclidean_pearson
|
69 |
+
value: 57.92665617677832
|
70 |
+
- type: euclidean_spearman
|
71 |
+
value: 62.76032598469037
|
72 |
+
- type: main_score
|
73 |
+
value: 63.09788380910325
|
74 |
+
- type: manhattan_pearson
|
75 |
+
value: 58.0736648155273
|
76 |
+
- type: manhattan_spearman
|
77 |
+
value: 62.94190582776664
|
78 |
+
task:
|
79 |
+
type: STS
|
80 |
+
- dataset:
|
81 |
+
config: ar
|
82 |
+
name: MTEB STS22 (ar)
|
83 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
84 |
+
split: test
|
85 |
+
type: mteb/sts22-crosslingual-sts
|
86 |
+
metrics:
|
87 |
+
- type: cosine_pearson
|
88 |
+
value: 51.72534929358701
|
89 |
+
- type: cosine_spearman
|
90 |
+
value: 59.75149627160101
|
91 |
+
- type: euclidean_pearson
|
92 |
+
value: 53.894835373598774
|
93 |
+
- type: euclidean_spearman
|
94 |
+
value: 59.44278354697161
|
95 |
+
- type: main_score
|
96 |
+
value: 59.75149627160101
|
97 |
+
- type: manhattan_pearson
|
98 |
+
value: 54.076675975406985
|
99 |
+
- type: manhattan_spearman
|
100 |
+
value: 59.610061143235725
|
101 |
+
task:
|
102 |
+
type: STS
|
103 |
+
widget:
|
104 |
+
- source_sentence: امرأة تكتب شيئاً
|
105 |
+
sentences:
|
106 |
+
- مراهق يتحدث إلى فتاة عبر كاميرا الإنترنت
|
107 |
+
- امرأة تقطع البصل الأخضر.
|
108 |
+
- مجموعة من كبار السن يتظاهرون حول طاولة الطعام.
|
109 |
+
- source_sentence: تتشكل النجوم في مناطق تكوين النجوم، والتي تنشأ نفسها من السحب الجزيئية.
|
110 |
+
sentences:
|
111 |
+
- لاعب كرة السلة على وشك تسجيل نقاط لفريقه.
|
112 |
+
- المقال التالي مأخوذ من نسختي من "أطلس البطريق الجديد للتاريخ الوسطى"
|
113 |
+
- قد يكون من الممكن أن يوجد نظام شمسي مثل نظامنا خارج المجرة
|
114 |
+
- source_sentence: >-
|
115 |
+
تحت السماء الزرقاء مع الغيوم البيضاء، يصل طفل لمس مروحة طائرة واقفة على حقل
|
116 |
+
من العشب.
|
117 |
+
sentences:
|
118 |
+
- امرأة تحمل كأساً
|
119 |
+
- طفل يحاول لمس مروحة طائرة
|
120 |
+
- اثنان من عازبين عن الشرب يستعدون للعشاء
|
121 |
+
- source_sentence: رجل في منتصف العمر يحلق لحيته في غرفة ذات جدران بيضاء والتي لا تبدو كحمام
|
122 |
+
sentences:
|
123 |
+
- فتى يخطط اسمه على مكتبه
|
124 |
+
- رجل ينام
|
125 |
+
- المرأة وحدها وهي نائمة في غرفة نومها
|
126 |
+
- source_sentence: الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.
|
127 |
+
sentences:
|
128 |
+
- شخص طويل القامة
|
129 |
+
- المرأة تنظر من النافذة.
|
130 |
+
- لقد مات الكلب
|
131 |
+
license: apache-2.0
|
132 |
+
---
|
133 |
+
|
134 |
+
# GATE-AraBert-V1
|
135 |
+
|
136 |
+
This is **GATE | General Arabic Text Embedding** trained using SentenceTransformers in a **multi-task** setup. The system trains on the **AllNLI** and on the **STS** dataset.
|
137 |
+
|
138 |
+
## Model Details
|
139 |
+
|
140 |
+
### Model Description
|
141 |
+
- **Model Type:** Sentence Transformer
|
142 |
+
- **Base model:** [Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2](https://huggingface.co/Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2) <!-- at revision 5ce4f80f3ede26de623d6ac10681399dba5c684a -->
|
143 |
+
- **Maximum Sequence Length:** 512 tokens
|
144 |
+
- **Output Dimensionality:** 768 tokens
|
145 |
+
- **Similarity Function:** Cosine Similarity
|
146 |
+
- **Training Datasets:**
|
147 |
+
- [all-nli](https://huggingface.co/datasets/Omartificial-Intelligence-Space/Arabic-NLi-Pair-Class)
|
148 |
+
- [sts](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb)
|
149 |
+
- **Language:** ar
|
150 |
+
|
151 |
+
|
152 |
+
## Usage
|
153 |
+
|
154 |
+
### Direct Usage (Sentence Transformers)
|
155 |
+
|
156 |
+
First install the Sentence Transformers library:
|
157 |
+
|
158 |
+
```bash
|
159 |
+
pip install -U sentence-transformers
|
160 |
+
```
|
161 |
+
|
162 |
+
Then you can load this model and run inference.
|
163 |
+
```python
|
164 |
+
from sentence_transformers import SentenceTransformer
|
165 |
+
|
166 |
+
# Download from the 🤗 Hub
|
167 |
+
model = SentenceTransformer("Omartificial-Intelligence-Space/GATE-AraBert-v1")
|
168 |
+
# Run inference
|
169 |
+
sentences = [
|
170 |
+
'الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.',
|
171 |
+
'لقد مات الكلب',
|
172 |
+
'شخص طويل القامة',
|
173 |
+
]
|
174 |
+
embeddings = model.encode(sentences)
|
175 |
+
print(embeddings.shape)
|
176 |
+
# [3, 768]
|
177 |
+
|
178 |
+
# Get the similarity scores for the embeddings
|
179 |
+
similarities = model.similarity(embeddings, embeddings)
|
180 |
+
print(similarities.shape)
|
181 |
+
# [3, 3]
|
182 |
+
```
|
183 |
+
|
184 |
+
|
185 |
+
## Evaluation
|
186 |
+
|
187 |
+
### Metrics
|
188 |
+
|
189 |
+
#### Semantic Similarity
|
190 |
+
* Dataset: `sts-dev`
|
191 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
192 |
+
|
193 |
+
| Metric | Value |
|
194 |
+
|:--------------------|:----------|
|
195 |
+
| pearson_cosine | 0.8391 |
|
196 |
+
| **spearman_cosine** | **0.841** |
|
197 |
+
| pearson_manhattan | 0.8277 |
|
198 |
+
| spearman_manhattan | 0.8361 |
|
199 |
+
| pearson_euclidean | 0.8274 |
|
200 |
+
| spearman_euclidean | 0.8358 |
|
201 |
+
| pearson_dot | 0.8154 |
|
202 |
+
| spearman_dot | 0.818 |
|
203 |
+
| pearson_max | 0.8391 |
|
204 |
+
| spearman_max | 0.841 |
|
205 |
+
|
206 |
+
#### Semantic Similarity
|
207 |
+
* Dataset: `sts-test`
|
208 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
209 |
+
|
210 |
+
| Metric | Value |
|
211 |
+
|:--------------------|:-----------|
|
212 |
+
| pearson_cosine | 0.813 |
|
213 |
+
| **spearman_cosine** | **0.8173** |
|
214 |
+
| pearson_manhattan | 0.8114 |
|
215 |
+
| spearman_manhattan | 0.8164 |
|
216 |
+
| pearson_euclidean | 0.8103 |
|
217 |
+
| spearman_euclidean | 0.8158 |
|
218 |
+
| pearson_dot | 0.7908 |
|
219 |
+
| spearman_dot | 0.7887 |
|
220 |
+
| pearson_max | 0.813 |
|
221 |
+
| spearman_max | 0.8173 |
|
222 |
+
|
223 |
+
|
224 |
+
## <span style="color:blue">Acknowledgments</span>
|
225 |
+
|
226 |
+
The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models.
|
227 |
+
|
228 |
+
|
229 |
+
```markdown
|
230 |
+
## Citation
|
231 |
+
|
232 |
+
If you use the GATE, please cite it as follows:
|
233 |
+
|
234 |
+
@misc{nacar2025GATE,
|
235 |
+
title={GATE: General Arabic Text Embedding for Enhanced Semantic Textual Similarity with Hybrid Loss Training},
|
236 |
+
author={Omer Nacar, Anis Koubaa, Serry Taiseer Sibaee and Lahouari Ghouti},
|
237 |
+
year={2025},
|
238 |
+
note={Submitted to COLING 2025},
|
239 |
+
url={https://huggingface.co/Omartificial-Intelligence-Space/GATE-AraBert-v1},
|
240 |
+
}
|
241 |
+
|
242 |
+
|