Mungert commited on
Commit
c32c379
·
verified ·
0 Parent(s):

Super-squash history to reclaim storage

Browse files
.gitattributes ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Skywork-VL-Reward-7B-f16.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Skywork-VL-Reward-7B-f16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Skywork-VL-Reward-7B-bf16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Skywork-VL-Reward-7B-f16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Skywork-VL-Reward-7B-bf16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Skywork-VL-Reward-7B-f16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
42
+ Skywork-VL-Reward-7B-bf16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
43
+ Skywork-VL-Reward-7B-q2_k_l.gguf filter=lfs diff=lfs merge=lfs -text
44
+ Skywork-VL-Reward-7B-q3_k_l.gguf filter=lfs diff=lfs merge=lfs -text
45
+ Skywork-VL-Reward-7B-q4_k_l.gguf filter=lfs diff=lfs merge=lfs -text
46
+ Skywork-VL-Reward-7B-q5_k_l.gguf filter=lfs diff=lfs merge=lfs -text
47
+ Skywork-VL-Reward-7B-q6_k_l.gguf filter=lfs diff=lfs merge=lfs -text
48
+ Skywork-VL-Reward-7B-q2_k_m.gguf filter=lfs diff=lfs merge=lfs -text
49
+ Skywork-VL-Reward-7B-q2_k_s.gguf filter=lfs diff=lfs merge=lfs -text
50
+ Skywork-VL-Reward-7B-q3_k_m.gguf filter=lfs diff=lfs merge=lfs -text
51
+ Skywork-VL-Reward-7B-q3_k_s.gguf filter=lfs diff=lfs merge=lfs -text
52
+ Skywork-VL-Reward-7B-q4_k_m.gguf filter=lfs diff=lfs merge=lfs -text
53
+ Skywork-VL-Reward-7B-q4_k_s.gguf filter=lfs diff=lfs merge=lfs -text
54
+ Skywork-VL-Reward-7B-q5_k_m.gguf filter=lfs diff=lfs merge=lfs -text
55
+ Skywork-VL-Reward-7B-q5_k_s.gguf filter=lfs diff=lfs merge=lfs -text
56
+ Skywork-VL-Reward-7B-q6_k_m.gguf filter=lfs diff=lfs merge=lfs -text
57
+ Skywork-VL-Reward-7B-q8_0.gguf filter=lfs diff=lfs merge=lfs -text
58
+ Skywork-VL-Reward-7B-q4_0.gguf filter=lfs diff=lfs merge=lfs -text
59
+ Skywork-VL-Reward-7B-q4_1.gguf filter=lfs diff=lfs merge=lfs -text
60
+ Skywork-VL-Reward-7B-q4_0_l.gguf filter=lfs diff=lfs merge=lfs -text
61
+ Skywork-VL-Reward-7B-q4_1_l.gguf filter=lfs diff=lfs merge=lfs -text
62
+ Skywork-VL-Reward-7B-q5_0.gguf filter=lfs diff=lfs merge=lfs -text
63
+ Skywork-VL-Reward-7B-q5_1.gguf filter=lfs diff=lfs merge=lfs -text
64
+ Skywork-VL-Reward-7B-q5_0_l.gguf filter=lfs diff=lfs merge=lfs -text
65
+ Skywork-VL-Reward-7B-q5_1_l.gguf filter=lfs diff=lfs merge=lfs -text
66
+ Skywork-VL-Reward-7B-iq2_xs.gguf filter=lfs diff=lfs merge=lfs -text
67
+ Skywork-VL-Reward-7B-iq2_xxs.gguf filter=lfs diff=lfs merge=lfs -text
68
+ Skywork-VL-Reward-7B-iq2_s.gguf filter=lfs diff=lfs merge=lfs -text
69
+ Skywork-VL-Reward-7B-iq2_m.gguf filter=lfs diff=lfs merge=lfs -text
70
+ Skywork-VL-Reward-7B-iq3_xs.gguf filter=lfs diff=lfs merge=lfs -text
71
+ Skywork-VL-Reward-7B-iq3_xxs.gguf filter=lfs diff=lfs merge=lfs -text
72
+ Skywork-VL-Reward-7B-iq3_s.gguf filter=lfs diff=lfs merge=lfs -text
73
+ Skywork-VL-Reward-7B-iq3_m.gguf filter=lfs diff=lfs merge=lfs -text
74
+ Skywork-VL-Reward-7B-iq4_xs.gguf filter=lfs diff=lfs merge=lfs -text
75
+ Skywork-VL-Reward-7B-iq4_nl.gguf filter=lfs diff=lfs merge=lfs -text
76
+ Skywork-VL-Reward-7B.imatrix filter=lfs diff=lfs merge=lfs -text
77
+ Skywork-VL-Reward-7B-q8_0.mmproj filter=lfs diff=lfs merge=lfs -text
78
+ Skywork-VL-Reward-7B-f16.mmproj filter=lfs diff=lfs merge=lfs -text
79
+ Skywork-VL-Reward-7B-f32.mmproj filter=lfs diff=lfs merge=lfs -text
80
+ Skywork-VL-Reward-7B-bf16.gguf filter=lfs diff=lfs merge=lfs -text
81
+ Skywork-VL-Reward-7B-bf16.mmproj filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,296 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: image-text-to-text
3
+ library_name: transformers
4
+ license: mit
5
+ base_model:
6
+ - Qwen/Qwen2.5-VL-7B-Instruct
7
+ tags:
8
+ - Multimodal Reward Model
9
+ - Reward Model
10
+ ---
11
+
12
+ # <span style="color: #7FFF7F;">Skywork-VL-Reward-7B GGUF Models</span>
13
+
14
+
15
+ ## <span style="color: #7F7FFF;">Model Generation Details</span>
16
+
17
+ This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`1f63e75f`](https://github.com/ggerganov/llama.cpp/commit/1f63e75f3b5dc7f44dbe63c8a41d23958fe95bc0).
18
+
19
+
20
+
21
+
22
+
23
+ ---
24
+
25
+ ## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>
26
+
27
+ I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.
28
+
29
+ In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:
30
+ 👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)
31
+
32
+ While this does increase model file size, it significantly improves precision for a given quantization level.
33
+
34
+ ### **I'd love your feedback—have you tried this? How does it perform for you?**
35
+
36
+ ---
37
+
38
+ <a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
39
+ Click here to learn more about choosing the right GGUF model format
40
+ </a>
41
+
42
+ ---
43
+
44
+ <!--Begin Original Model Card-->
45
+
46
+
47
+ <div align="center">
48
+ <img src="skywork-logo.png" alt="Skywork" width="500" height="400">
49
+ </div>
50
+
51
+ ## 🔥News
52
+
53
+ **May 12, 2025**: Our technical report is now available on arXiv and we welcome citations:[Skywork-VL Reward: An Effective Reward Model for Multimodal Understanding and Reasoning](https://arxiv.org/abs/2505.07263)
54
+
55
+ **April 24, 2025**: We released **Skywork-VL-Reward-7B**, A state-of-the-art multimodal reward model on [VLRewardBench](https://huggingface.co/spaces/MMInstruction/VL-RewardBench), and have released our technical report on the [R1V GitHub](https://github.com/SkyworkAI/Skywork-R1V/blob/main/SkyworkVL_RM.pdf) repository.
56
+
57
+ ## Introduction
58
+ The lack of multimodal reward models on the market has become a major bottleneck restricting the development of multimodal reinforcement technology.
59
+ We open source the 7B multimodal reward model Skywork-VL-Reward, injecting new momentum into the industry and opening a new chapter in multimodal reinforcement learning
60
+
61
+
62
+ Skywork-VL-Reward is based on the [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) architecture with the addition of a value head structure for training reward model.
63
+ We obtained SOTA of 73.1 in [VL-RewardBench](https://vl-rewardbench.github.io/) and high score of 90.1 in [RewardBench](https://huggingface.co/spaces/allenai/reward-bench).
64
+ In addition, our MPO trained on Skywork-R1V-2.0 further validates the effectiveness of the model.
65
+ We hope that this multimodal reward model will contribute to the open source community!
66
+ Please refer to our technical report for more details.
67
+
68
+ ## Technical Report
69
+ [Skywork-VL Reward: An Effective Reward Model for Multimodal Understanding and Reasoning](https://arxiv.org/abs/2505.07263)
70
+
71
+ ## Evaluation
72
+ <h3 align="center">VL-RewardBench</h3>
73
+ <table style="margin: auto;">
74
+ <thead>
75
+ <tr>
76
+ <th>Model Name</th><th>Model Size</th><th>General</th><th>Hallucination</th><th>Reasoning</th><th>Overall Accuracy</th><th>Macro Average</th>
77
+ </tr>
78
+ </thead>
79
+ <tbody>
80
+ <tr><td colspan="7" align="center"><i>Proprietary Models</td></tr>
81
+ <tr><td>Claude-3.5-Sonnet(2024-06-22)</td><td>-</td><td>43.4</td><td>55.0</td><td>62.3</td><td>55.3</td><td>53.6</td></tr>
82
+ <tr><td>Gemini-1.5-Flash (2024-09-24)</td><td>-</td><td>47.8</td><td>59.6</td><td>58.4</td><td>57.6</td><td>55.3</td></tr>
83
+ <tr><td>GPT-4o(2024-08-06)</td><td>-</td><td>49.1</td><td>67.6</td><td>70.5</td><td>65.8</td><td>62.4</td></tr>
84
+ <tr><td>Gemini-1.5-Pro(2024-09-24)</td><td>-</td><td>50.8</td><td>72.5</td><td>64.2</td><td>67.2</td><td>62.5</td></tr>
85
+ <tr><td>Gemini-2.0-flash-exp(2024-12)</td><td>-</td><td>50.8</td><td>72.6</td><td>70.1</td><td><strong>68.8</strong></td><td><strong>64.5</strong></td></tr>
86
+ <tr><td colspan="7" align="center"><i>Open-Source Models</td></tr>
87
+ <tr><td>Qwen2-VL-7B-Instruct</td><td>7B</td><td>31.6</td><td>19.1</td><td>51.1</td><td>28.3</td><td>33.9</td></tr>
88
+ <tr><td>MAmmoTH-VL-8B</td><td>8B</td><td>36.0</td><td>40.0</td><td>52.0</td><td>42.2</td><td>42.7</td></tr>
89
+ <tr><td>Qwen2.5-VL-7B-Instruct</td><td>7B</td><td>43.4</td><td>42.0</td><td>63.0</td><td>48.0</td><td>49.5</td></tr>
90
+ <tr><td>InternVL3-8B</td><td>8B</td><td>60.6</td><td>44.0</td><td>62.3</td><td>57.0</td><td>55.6</td></tr>
91
+ <tr><td>IXC-2.5-Reward-7B</td><td>7B</td><td>80.3</td><td>65.3</td><td>60.4</td><td>66.3</td><td>68.6</td></tr>
92
+ <tr><td>Qwen2-VL-72B-Instruct</td><td>72B</td><td>38.1</td><td>32.8</td><td>58.0</td><td>39.5</td><td>43.0</td></tr>
93
+ <tr><td>Molmo-72B-0924</td><td>72B</td><td>33.9</td><td>42.3</td><td>54.9</td><td>44.1</td><td>43.7</td></tr>
94
+ <tr><td>QVQ-72B-Preview</td><td>72B</td><td>41.8</td><td>46.2</td><td>51.2</td><td>46.4</td><td>46.4</td></tr>
95
+ <tr><td>Qwen2.5-VL-72B-Instruct</td><td>72B</td><td>47.8</td><td>46.8</td><td>63.5</td><td>51.6</td><td>52.7</td></tr>
96
+ <tr><td>InternVL3-78B</td><td>78B</td><td>67.8</td><td>52.5</td><td>64.5</td><td>63.3</td><td>61.6</td></tr>
97
+ <tr><td><strong>Skywork-VL Reward(Ours)</strong></td><td>7B</td><td>66.0</td><td>80.0</td><td>61.0</td><td><strong>73.1</strong></td><td><strong>69.0</strong></td></tr>
98
+ </tbody>
99
+ </table>
100
+
101
+ ---
102
+
103
+ <h3 align="center">RewardBench</h3>
104
+ <table style="margin: auto;">
105
+ <thead>
106
+ <tr>
107
+ <th>Model Name</th><th>Chat</th><th>Chat Hard</th><th>Safety</th><th>Reasoning</th><th>Score</th>
108
+ </tr>
109
+ </thead>
110
+ <tbody>
111
+ <tr><td colspan="7" align="center"><i>Language-Only Reward Models</td></tr>
112
+ <tr><td>InternLM2-7B-Reward</td><td>99.2</td><td>69.5</td><td>87.2</td><td>94.5</td><td>87.6</td></tr>
113
+ <tr><td>Skywork-Reward-Llama3.1-8B</td><td>95.8</td><td>87.3</td><td>90.8</td><td>96.2</td><td>92.5</td></tr>
114
+ <tr><td>Skywork-Reward-Llama-3.1-8B-v0.2</td><td>94.7</td><td>88.4</td><td>92.7</td><td>96.7</td><td>93.1</td></tr>
115
+ <tr><td>QRM-Llama3.1-8B-v2</td><td>96.4</td><td>86.8</td><td>92.6</td><td>96.8</td><td><strong>93.1</strong></td></tr>
116
+ <tr><td colspan="7" align="center"><i>Multi-Modal Reward Models</td></tr>
117
+ <tr><td>Qwen2-VL-7B-Instruct</td><td>65.1</td><td>50.9</td><td>55.8</td><td>68.3</td><td>60.0</td></tr>
118
+ <tr><td>InternVL3-8B</td><td>97.2</td><td>50.4</td><td>83.6</td><td>83.9</td><td>78.8</td></tr>
119
+ <tr><td>Qwen2.5-VL-7B-Instruct</td><td>94.3</td><td>63.8</td><td>84.1</td><td>86.2</td><td>82.1</td></tr>
120
+ <tr><td>IXC-2.5-Reward-7B</td><td>90.8</td><td>83.8</td><td>87.8</td><td>90.0</td><td>88.1</td></tr>
121
+ <tr><td><strong>Skywork-VL Reward(Ours)</strong></td><td>90.0</td><td>87.5</td><td>91.1</td><td>91.8</td><td><strong>90.1</strong></td></tr>
122
+ </tbody>
123
+ </table>
124
+
125
+ ---
126
+
127
+
128
+ ## Usage
129
+ ### Set Up the Environment
130
+
131
+ ```shell
132
+ conda create -n vl-reward python=3.11
133
+ conda activate vl-reward
134
+ bash setup.sh
135
+ ```
136
+
137
+ ### Run the Inference Code
138
+
139
+ ```python
140
+ import torch
141
+ from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
142
+ from trl import AutoModelForCausalLMWithValueHead
143
+ from qwen_vl_utils import process_vision_info
144
+ from transformers.utils import cached_file
145
+ from safetensors import safe_open
146
+
147
+
148
+ processor = AutoProcessor.from_pretrained("Skywork/Skywork-VL-Reward-7B")
149
+ # The default range for the number of visual tokens per image in the model is 4-16384.
150
+ # You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
151
+ # min_pixels = 256*28*28
152
+ # max_pixels = 1280*28*28
153
+ # processor = AutoProcessor.from_pretrained("Skywork/Skywork-VL-Reward-7B", min_pixels=min_pixels, max_pixels=max_pixels)
154
+
155
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
156
+ "Skywork/Skywork-VL-Reward-7B",
157
+ device_map="auto",
158
+ torch_dtype=torch.bfloat16,
159
+ )
160
+ # We recommend enabling flash_attention_2 for better acceleration and memory saving
161
+ # pip install flash-attn --no-build-isolation
162
+ #
163
+ # model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
164
+ # "Skywork/Skywork-VL-Reward-7B",
165
+ # device_map="auto",
166
+ # torch_dtype=torch.bfloat16,
167
+ # attn_implementation="flash_attention_2",
168
+ # )
169
+
170
+ model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
171
+ vhead_file = cached_file(
172
+ path_or_repo_id="Skywork/Skywork-VL-Reward-7B", filename="value_head.safetensors"
173
+ )
174
+ with safe_open(vhead_file, framework="pt", device="cpu") as f:
175
+ vhead_params = {key: f.get_tensor(key) for key in f.keys()}
176
+ model.load_state_dict(vhead_params, strict=False)
177
+ model.requires_grad_(False)
178
+ model.eval()
179
+
180
+ # score: 23.89
181
+ # if you use flash_attention_2 the score will be 23.76
182
+ demo_image = "demo.jpg"
183
+ demo_question = "Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.\nQuestion: Is Purple the highest value?\nChoices:\n(A) no\n(B) yes"
184
+ demo_answer = "The answer is: B"
185
+
186
+ messages = [
187
+ {
188
+ "role": "user",
189
+ "content": [
190
+ {
191
+ "type": "image",
192
+ "image": demo_image,
193
+ },
194
+ {
195
+ "type": "text",
196
+ "text": demo_question,
197
+ },
198
+ ],
199
+ },
200
+ {
201
+ "role": "assistant",
202
+ "content": demo_answer,
203
+ },
204
+ ]
205
+ text = processor.apply_chat_template(
206
+ messages, tokenize=False, add_generation_prompt=False
207
+ )
208
+ image_inputs, video_inputs = process_vision_info(messages)
209
+ inputs = processor(
210
+ text=[text],
211
+ images=image_inputs,
212
+ videos=video_inputs,
213
+ padding=True,
214
+ return_tensors="pt",
215
+ )
216
+ inputs = inputs.to("cuda")
217
+ values = model(**inputs, return_dict=True, use_cache=False)[-1]
218
+ scores = values.gather(
219
+ dim=-1, index=(inputs["attention_mask"].sum(dim=-1, keepdim=True) - 1)
220
+ )
221
+ score = scores[0].item()
222
+ print("Reward Score is: ", score)
223
+ ```
224
+
225
+ ## Citation
226
+ If you use this work in your research, please cite:
227
+ ```
228
+ @misc{wang2025skyworkvlrewardeffectivereward,
229
+ title={Skywork-VL Reward: An Effective Reward Model for Multimodal Understanding and Reasoning},
230
+ author={Xiaokun Wang and Peiyu Wang and Jiangbo Pei and Wei Shen and Yi Peng and Yunzhuo Hao and Weijie Qiu and Ai Jian and Tianyidan Xie and Xuchen Song and Yang Liu and Yahui Zhou},
231
+ year={2025},
232
+ eprint={2505.07263},
233
+ archivePrefix={arXiv},
234
+ primaryClass={cs.CV},
235
+ url={https://arxiv.org/abs/2505.07263},
236
+ }
237
+ ```
238
+
239
+ <!--End Original Model Card-->
240
+
241
+ ---
242
+
243
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
244
+
245
+ Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:
246
+
247
+ 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
248
+
249
+
250
+ The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
251
+
252
+ 💬 **How to test**:
253
+ Choose an **AI assistant type**:
254
+ - `TurboLLM` (GPT-4.1-mini)
255
+ - `HugLLM` (Hugginface Open-source models)
256
+ - `TestLLM` (Experimental CPU-only)
257
+
258
+ ### **What I’m Testing**
259
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
260
+ - **Function calling** against live network services
261
+ - **How small can a model go** while still handling:
262
+ - Automated **Nmap security scans**
263
+ - **Quantum-readiness checks**
264
+ - **Network Monitoring tasks**
265
+
266
+ 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
267
+ - ✅ **Zero-configuration setup**
268
+ - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
269
+ - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
270
+
271
+ ### **Other Assistants**
272
+ 🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
273
+ - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
274
+ - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
275
+ - **Real-time network diagnostics and monitoring**
276
+ - **Security Audits**
277
+ - **Penetration testing** (Nmap/Metasploit)
278
+
279
+ 🔵 **HugLLM** – Latest Open-source models:
280
+ - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
281
+
282
+ ### 💡 **Example commands you could test**:
283
+ 1. `"Give me info on my websites SSL certificate"`
284
+ 2. `"Check if my server is using quantum safe encyption for communication"`
285
+ 3. `"Run a comprehensive security audit on my server"`
286
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!
287
+
288
+ ### Final Word
289
+
290
+ I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
291
+
292
+ If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
293
+
294
+ I'm also open to job opportunities or sponsorship.
295
+
296
+ Thank you! 😊
Skywork-VL-Reward-7B-bf16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f9a2083a735ec4c7bc8ff401c2bac25fddeedfef19da7dbbe9eb2bb0b817dca
3
+ size 15237853600
Skywork-VL-Reward-7B-bf16.mmproj ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c86d2b50834b82db8655cb19fc9db6bebd7d4f39514e106f4e5d6f08494ea16b
3
+ size 1354163232
Skywork-VL-Reward-7B-bf16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32cf02791d923a056c11ddf762ddc27d6633ec6ee611cc45ef66779615f258b6
3
+ size 11287998880
Skywork-VL-Reward-7B-f16.mmproj ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f4a4971a8452bc56d469b49302a956f58f4239582a09d98ce58ef27f3c95996
3
+ size 1354163232
Skywork-VL-Reward-7B-f16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9854053e2770cd55848a2748ccccde63eab4080039b18bf838386568840bac52
3
+ size 11287998880
Skywork-VL-Reward-7B-f32.mmproj ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a92ab85350bd5d36853dd2df9b1b894092aeb4e4c8e9d0b239e5571f32b3008
3
+ size 2703221792
Skywork-VL-Reward-7B-iq2_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37cb808e35fc39bafb75a0b0cf0e131563c2a6b243a95b7c32f35c41a093718c
3
+ size 3039122144
Skywork-VL-Reward-7B-iq2_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27bc5841cc291b6220bd16e26ddfd127c5fad5335dd2f16634056f98ca985b75
3
+ size 2912965344
Skywork-VL-Reward-7B-iq2_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d43963c9a553a753a54b1d166512c6b8b96f55012ccd95a2f1e13925cc93dfa8
3
+ size 2839335648
Skywork-VL-Reward-7B-iq2_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4eb16056baee061000a4bb844ccfbf8ca6445d60954a14ead9afff9bb95fe99
3
+ size 2650903264
Skywork-VL-Reward-7B-iq3_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4081a7c62e2d2b017e256b55a5529b1555e9df1f8157c323b9796d842d64f9f4
3
+ size 3603387104
Skywork-VL-Reward-7B-iq3_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17ec4aec29f3a9b86bedd1778de58fc0a6be2063095314a2827542868a2f9d35
3
+ size 3565855456
Skywork-VL-Reward-7B-iq3_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a7526abb084386b52e04e0bd6e909fe4053eaba127cde3c54e1984ed3b13fdf
3
+ size 3412919008
Skywork-VL-Reward-7B-iq3_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e1b09c1d899b2a733fb393f9f3a8ea1b7a58d07fa9d19458d3629d3265fd51f
3
+ size 3272655584
Skywork-VL-Reward-7B-iq4_nl.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf1ca58a18f13f4e5e5689b99714174a7fb5b380c68280158a3c20818c8444fc
3
+ size 4437813984
Skywork-VL-Reward-7B-iq4_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:108b4273254051a6b6d3e236f8c2104818af9b3c76b2ba936758d221f75337bd
3
+ size 4218473184
Skywork-VL-Reward-7B-q2_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a0d20031e87bdd7ba89ae9a8aac231583a5e597287a0360b58e546d2380a4cf
3
+ size 3259495136
Skywork-VL-Reward-7B-q2_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59ea0734af51b0095d96afd77fd8c395f36ef7ecbf9046843f9a37b6d6e9cecc
3
+ size 2934325984
Skywork-VL-Reward-7B-q3_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb1698321f00b256dfd911209fbeb4da3ea0eda63334bc838064d464ceeef1df
3
+ size 3996852960
Skywork-VL-Reward-7B-q3_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a079ad59846b6d3ff0fe07c9c2fb6ef7894c56c924281904a5cf716ef203806
3
+ size 3610813152
Skywork-VL-Reward-7B-q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd2e621b5dd1c7ba3cc1a5b051fd5aaf3a60b3c9cb29b95302790ee16f087e05
3
+ size 4290884320
Skywork-VL-Reward-7B-q4_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2486dca1a0e51bb6b3df07569839fb6e2a6c0283397e99d21a55166b15d6fb39
3
+ size 4766839520
Skywork-VL-Reward-7B-q4_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b14466da17bffa4fdf9536a0928dedd04197936d0df5f938027fb7544b840b2c
3
+ size 4777648864
Skywork-VL-Reward-7B-q4_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5580993365a173e3d852286d15b6eb37fc8eeee179575073ac941532570e8d60
3
+ size 4634059488
Skywork-VL-Reward-7B-q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52da5cd6039dc843eefceca85271fc0027ac7ba1723823cf5aa5b665fc3be464
3
+ size 5242794720
Skywork-VL-Reward-7B-q5_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5a2c1481fdfe07698bc78a706c11df60e0fc6a59171aedcb6ee2ba6f0b1b72a
3
+ size 5718749920
Skywork-VL-Reward-7B-q5_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:539b86d73f011af5d022785943c47e422ef1ce066925739357990557d3ea1451
3
+ size 5527450336
Skywork-VL-Reward-7B-q5_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31a03a2f82a8cd88ec61b4f54c3f2d680e825bc124e087acb108534ad425582b
3
+ size 5453361888
Skywork-VL-Reward-7B-q6_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d97ef343da96305b309756f4d33c1d730ae3caa3fb6b041da18a5250240410c
3
+ size 6254199520
Skywork-VL-Reward-7B-q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48741aa98e13dec3c213cc95ec215452e79190ae08caf7549d5d98d5a9ca0cf9
3
+ size 8098525600
Skywork-VL-Reward-7B-q8_0.mmproj ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47551c91c476944aa7d15d4f99141fa7e7ce82e83523bae7706e3126ce58b59a
3
+ size 853120032
Skywork-VL-Reward-7B.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:825139c8429ceddfdf3953e711b9607bbf5fbc6ff7f81224a604e992909c5201
3
+ size 4536712