--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - generator metrics: - recall - precision - accuracy model-index: - name: distilbert-sql-timeout-classifier-with-trained-tokenizer results: - task: name: Text Classification type: text-classification dataset: name: generator type: generator config: default split: train args: default metrics: - name: Recall type: recall value: 0.7370441458733206 - name: Precision type: precision value: 0.15262321144674085 - name: Accuracy type: accuracy value: 0.8761327655857626 --- # distilbert-sql-timeout-classifier-with-trained-tokenizer This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.4898 - Recall: 0.7370 - Precision: 0.1526 - Affect Rate: 0.1164 - Accuracy: 0.8761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Recall | Precision | Affect Rate | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:-----------:|:--------:| | 0.5018 | 1.0 | 1946 | 0.3744 | 0.6929 | 0.1758 | 0.0924 | 0.8988 | | 0.3196 | 2.0 | 3892 | 0.4938 | 0.7390 | 0.1294 | 0.1414 | 0.8512 | | 0.2219 | 3.0 | 5838 | 0.4898 | 0.7370 | 0.1526 | 0.1164 | 0.8761 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2