Added Model
Browse files- 0_Transformer/config.json +49 -0
- 0_Transformer/pytorch_model.bin +3 -0
- 0_Transformer/sentence_bert_config.json +4 -0
- 0_Transformer/special_tokens_map.json +7 -0
- 0_Transformer/tokenizer.json +0 -0
- 0_Transformer/tokenizer_config.json +15 -0
- 0_Transformer/vocab.txt +0 -0
- 1_Pooling/config.json +9 -0
- 2_Dense/config.json +1 -0
- 2_Dense/pytorch_model.bin +3 -0
- README.md +89 -1
- config_sentence_transformers.json +7 -0
- eval/similarity_evaluation_results.csv +17 -0
- modules.json +20 -0
0_Transformer/config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "indobenchmark/indobert-lite-base-p1",
|
3 |
+
"_num_labels": 5,
|
4 |
+
"architectures": [
|
5 |
+
"AlbertModel"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0,
|
8 |
+
"bos_token_id": 2,
|
9 |
+
"classifier_dropout_prob": 0.1,
|
10 |
+
"down_scale_factor": 1,
|
11 |
+
"embedding_size": 128,
|
12 |
+
"eos_token_id": 3,
|
13 |
+
"gap_size": 0,
|
14 |
+
"hidden_act": "gelu",
|
15 |
+
"hidden_dropout_prob": 0,
|
16 |
+
"hidden_size": 768,
|
17 |
+
"id2label": {
|
18 |
+
"0": "LABEL_0",
|
19 |
+
"1": "LABEL_1",
|
20 |
+
"2": "LABEL_2",
|
21 |
+
"3": "LABEL_3",
|
22 |
+
"4": "LABEL_4"
|
23 |
+
},
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"inner_group_num": 1,
|
26 |
+
"intermediate_size": 3072,
|
27 |
+
"label2id": {
|
28 |
+
"LABEL_0": 0,
|
29 |
+
"LABEL_1": 1,
|
30 |
+
"LABEL_2": 2,
|
31 |
+
"LABEL_3": 3,
|
32 |
+
"LABEL_4": 4
|
33 |
+
},
|
34 |
+
"layer_norm_eps": 1e-12,
|
35 |
+
"max_position_embeddings": 512,
|
36 |
+
"model_type": "albert",
|
37 |
+
"net_structure_type": 0,
|
38 |
+
"num_attention_heads": 12,
|
39 |
+
"num_hidden_groups": 1,
|
40 |
+
"num_hidden_layers": 12,
|
41 |
+
"num_memory_blocks": 0,
|
42 |
+
"output_past": true,
|
43 |
+
"pad_token_id": 0,
|
44 |
+
"position_embedding_type": "absolute",
|
45 |
+
"torch_dtype": "float32",
|
46 |
+
"transformers_version": "4.29.2",
|
47 |
+
"type_vocab_size": 2,
|
48 |
+
"vocab_size": 30000
|
49 |
+
}
|
0_Transformer/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:694ff51abc4465cd22dd7945e017a061c354d34e547f6feb4558fc5afaa49db2
|
3 |
+
size 46747263
|
0_Transformer/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 32,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
0_Transformer/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
0_Transformer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
0_Transformer/tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"model_max_length": 1000000000000000019884624838656,
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
0_Transformer/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad2363388c666f7378e908cbddaacf912aa19a4a943cb2b22ef7ff64d8744e73
|
3 |
+
size 2363583
|
README.md
CHANGED
@@ -1,3 +1,91 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
datasets:
|
8 |
+
- LazarusNLP/wikipedia_id_20230520
|
9 |
---
|
10 |
+
|
11 |
+
# LazarusNLP/congen-indobert-lite-base
|
12 |
+
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
+
|
15 |
+
<!--- Describe your model here -->
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
+
|
31 |
+
model = SentenceTransformer('LazarusNLP/congen-indobert-lite-base')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
## Evaluation Results
|
39 |
+
|
40 |
+
<!--- Describe how your model was evaluated -->
|
41 |
+
|
42 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=LazarusNLP/congen-indobert-lite-base)
|
43 |
+
|
44 |
+
|
45 |
+
## Training
|
46 |
+
The model was trained with the parameters:
|
47 |
+
|
48 |
+
**DataLoader**:
|
49 |
+
|
50 |
+
`torch.utils.data.dataloader.DataLoader` of length 6524 with parameters:
|
51 |
+
```
|
52 |
+
{'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
53 |
+
```
|
54 |
+
|
55 |
+
**Loss**:
|
56 |
+
|
57 |
+
`sentence_transformers_congen.losses.ConGenLoss.ConGenLoss`
|
58 |
+
|
59 |
+
Parameters of the fit()-Method:
|
60 |
+
```
|
61 |
+
{
|
62 |
+
"epochs": 20,
|
63 |
+
"evaluation_steps": 0,
|
64 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
65 |
+
"max_grad_norm": 1,
|
66 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
67 |
+
"optimizer_params": {
|
68 |
+
"correct_bias": false,
|
69 |
+
"eps": 1e-06,
|
70 |
+
"lr": 0.0003
|
71 |
+
},
|
72 |
+
"scheduler": "WarmupLinear",
|
73 |
+
"steps_per_epoch": null,
|
74 |
+
"warmup_steps": 13048,
|
75 |
+
"weight_decay": 0.01
|
76 |
+
}
|
77 |
+
```
|
78 |
+
|
79 |
+
|
80 |
+
## Full Model Architecture
|
81 |
+
```
|
82 |
+
SentenceTransformer(
|
83 |
+
(0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: AlbertModel
|
84 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
85 |
+
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
86 |
+
)
|
87 |
+
```
|
88 |
+
|
89 |
+
## Citing & Authors
|
90 |
+
|
91 |
+
<!--- Describe where people can find more information -->
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "1.0.0",
|
4 |
+
"transformers": "4.29.2",
|
5 |
+
"pytorch": "2.0.1+cu117"
|
6 |
+
}
|
7 |
+
}
|
eval/similarity_evaluation_results.csv
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,-1,0.7784628369715322,0.790441310186935,0.7745610761786144,0.7815123112306533,0.7707112402507581,0.7782807840320607,0.5110618110023735,0.5106208643865392
|
3 |
+
1,-1,0.7919183217313387,0.8026935090405058,0.7781612660393912,0.7846604995944839,0.7743678045260972,0.7816463913967416,0.49774579884752534,0.5083373628127001
|
4 |
+
2,-1,0.8130861078714943,0.8199870662006165,0.7644937862950276,0.7692507983083728,0.7609452213447676,0.7667759406867635,0.5105255947994755,0.5181236204472818
|
5 |
+
3,-1,0.8120522841233425,0.8186837188637932,0.7569514053881609,0.7617098701664707,0.7537653246203407,0.759006221670444,0.4860231165617469,0.48471249955484075
|
6 |
+
4,-1,0.8096698438029456,0.8176057439253992,0.7539490531181825,0.7601980534739224,0.7500700790213375,0.7570742790234226,0.49307098290290635,0.4970878479418517
|
7 |
+
5,-1,0.8154446573476172,0.8221920403048152,0.7607869736755386,0.765150446235885,0.756842552092023,0.7624013379497931,0.5052868003959904,0.5053055818128606
|
8 |
+
6,-1,0.8182260791503786,0.8240742902576491,0.7665322890312545,0.7723289417405284,0.7628382123508297,0.7697840965226919,0.5052775802370709,0.5092274902133616
|
9 |
+
7,-1,0.8226442739407788,0.8281965374756299,0.7583215259849425,0.7619723412052115,0.7539303731069449,0.7589825319368873,0.5147085467217847,0.5215022704627538
|
10 |
+
8,-1,0.8250791879929443,0.8302767883248077,0.767164179868101,0.7722566865545311,0.7637886454196815,0.7697028626849216,0.5251239718953331,0.5280571824538515
|
11 |
+
9,-1,0.8175180934127748,0.8236161902306005,0.75219688988271,0.7588720365221943,0.7483920597915993,0.7562650335719203,0.48908222053279615,0.4938552834363178
|
12 |
+
10,-1,0.8234490987201571,0.8291432428933043,0.7614318396464613,0.7668242716817875,0.7574953059572305,0.7635380611733849,0.5060344154344832,0.5059956103090336
|
13 |
+
11,-1,0.818128634922896,0.824645219560505,0.755939003935069,0.7634814034489885,0.7516300329176759,0.7599805112910322,0.47717241436727775,0.48320670136398697
|
14 |
+
12,-1,0.8235165732186087,0.8285989043600063,0.7532804361204786,0.7614422436425015,0.7490167315723992,0.7585644847033318,0.500012271619837,0.5050206843701895
|
15 |
+
13,-1,0.8261978317523195,0.8302346388233832,0.7599432436544662,0.765971799548841,0.7560932821503724,0.7629799226669498,0.5138222972304346,0.5201865738264096
|
16 |
+
14,-1,0.8265272353853084,0.829494040339557,0.7501531520145648,0.7569895102802171,0.7458370306298866,0.7538350347403957,0.5115806205876149,0.5194403704651349
|
17 |
+
15,-1,0.824367971815316,0.8292325703701074,0.7494784306248647,0.7560956491103782,0.7452161064402848,0.7529456611154134,0.5088827882953869,0.5160813717087587
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "0_Transformer",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|