--- library_name: transformers tags: [] --- This is a DeBERTa-V3 condition checker distilled from GPT-4.1: Base model (0.1B, 71% consistency with GPT-4.1): [this link](https://huggingface.co/KomeijiForce/deberta-v3-large-check-scene) The dataset (20,759 cases) for distillation can be accessed via [this link](https://huggingface.co/datasets/KomeijiForce/Check_Scenes) ### How to use? ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load Condition Checker classifier_path = "KomeijiForce/deberta-v3-large-check-scene" classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_path) classifier = AutoModelForSequenceClassification.from_pretrained(classifier_path) # Formalize Condition Checking into Prompt scene = "Koishi quietly emerged from behind the dense foliage, her sudden appearance catching the corner of Satori's eye as she stepped into the direct line of vision, smiling mischievously." question = "Does Koishi enter someone's direct field of vision?" prompt = f'''Scene: {scene} Question: {question} Directly answer only yes/no/unknown.''' # Scoring and Decoding with torch.no_grad(): logits = classifier(**classifier_tokenizer(prompt, return_tensors="pt")).logits[0] choice = logits.argmax(-1).item() answer = [False, None, True][choice] print(answer) # True ```