--- library_name: transformers base_model: KasuleTrevor/wav2vec2-xls-r-300m-nyn_filtered-yogera-v3 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Luganda_speech_to_intent_nyn_xlsr results: [] --- # Luganda_speech_to_intent_nyn_xlsr This model is a fine-tuned version of [KasuleTrevor/wav2vec2-xls-r-300m-nyn_filtered-yogera-v3](https://huggingface.co/KasuleTrevor/wav2vec2-xls-r-300m-nyn_filtered-yogera-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1401 - Accuracy: 0.9757 - Precision: 0.9761 - Recall: 0.9757 - F1: 0.9755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.9405 | 1.0 | 131 | 2.3617 | 0.5163 | 0.4655 | 0.5163 | 0.4450 | | 1.9336 | 2.0 | 262 | 0.1540 | 0.9859 | 0.9865 | 0.9859 | 0.9858 | | 0.3581 | 3.0 | 393 | 0.0748 | 0.9902 | 0.9904 | 0.9902 | 0.9902 | | 0.1253 | 4.0 | 524 | 0.0730 | 0.9881 | 0.9884 | 0.9881 | 0.9881 | | 0.1166 | 5.0 | 655 | 0.0609 | 0.9913 | 0.9915 | 0.9913 | 0.9913 | | 0.1071 | 6.0 | 786 | 0.0667 | 0.9913 | 0.9915 | 0.9913 | 0.9913 | | 0.0836 | 7.0 | 917 | 0.0601 | 0.9902 | 0.9904 | 0.9902 | 0.9902 | | 0.0736 | 8.0 | 1048 | 0.0611 | 0.9913 | 0.9915 | 0.9913 | 0.9913 | | 0.0612 | 9.0 | 1179 | 0.0633 | 0.9902 | 0.9904 | 0.9902 | 0.9902 | | 0.0553 | 10.0 | 1310 | 0.0657 | 0.9902 | 0.9904 | 0.9902 | 0.9902 | | 0.0478 | 11.0 | 1441 | 0.0650 | 0.9913 | 0.9915 | 0.9913 | 0.9913 | | 0.0392 | 12.0 | 1572 | 0.0681 | 0.9902 | 0.9904 | 0.9902 | 0.9902 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.1.0+cu118 - Datasets 3.6.0 - Tokenizers 0.21.2