--- library_name: transformers license: apache-2.0 base_model: dslim/distilbert-NER tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-classn-LinearAlg-finetuned-span-width-2 results: [] --- # distilbert-classn-LinearAlg-finetuned-span-width-2 This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6148 - Accuracy: 0.6429 - F1: 0.6377 - Precision: 0.6600 - Recall: 0.6429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.314885705504048e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 10 | 2.4233 | 0.1429 | 0.0916 | 0.0802 | 0.1429 | | No log | 2.0 | 20 | 2.4147 | 0.1429 | 0.0920 | 0.0804 | 0.1429 | | No log | 3.0 | 30 | 2.4004 | 0.1667 | 0.1208 | 0.1178 | 0.1667 | | No log | 4.0 | 40 | 2.3840 | 0.1587 | 0.1192 | 0.1064 | 0.1587 | | No log | 5.0 | 50 | 2.3674 | 0.1667 | 0.1293 | 0.1176 | 0.1667 | | No log | 6.0 | 60 | 2.3469 | 0.1905 | 0.1467 | 0.1312 | 0.1905 | | No log | 7.0 | 70 | 2.3135 | 0.1984 | 0.1750 | 0.2072 | 0.1984 | | No log | 8.0 | 80 | 2.2775 | 0.2143 | 0.1964 | 0.2092 | 0.2143 | | No log | 9.0 | 90 | 2.2407 | 0.2302 | 0.2121 | 0.2260 | 0.2302 | | No log | 10.0 | 100 | 2.1807 | 0.3016 | 0.2911 | 0.3070 | 0.3016 | | No log | 11.0 | 110 | 2.1111 | 0.3413 | 0.3332 | 0.3604 | 0.3413 | | No log | 12.0 | 120 | 2.0411 | 0.4048 | 0.3799 | 0.3880 | 0.4048 | | No log | 13.0 | 130 | 1.9745 | 0.4444 | 0.4421 | 0.4658 | 0.4444 | | No log | 14.0 | 140 | 1.9188 | 0.5238 | 0.5207 | 0.5477 | 0.5238 | | No log | 15.0 | 150 | 1.8678 | 0.5635 | 0.5585 | 0.5787 | 0.5635 | | No log | 16.0 | 160 | 1.8253 | 0.5794 | 0.5685 | 0.5826 | 0.5794 | | No log | 17.0 | 170 | 1.7861 | 0.5952 | 0.5879 | 0.6104 | 0.5952 | | No log | 18.0 | 180 | 1.7471 | 0.6032 | 0.5896 | 0.6028 | 0.6032 | | No log | 19.0 | 190 | 1.7105 | 0.6190 | 0.6132 | 0.6383 | 0.6190 | | No log | 20.0 | 200 | 1.6786 | 0.6270 | 0.6221 | 0.6484 | 0.6270 | | No log | 21.0 | 210 | 1.6556 | 0.6508 | 0.6428 | 0.6627 | 0.6508 | | No log | 22.0 | 220 | 1.6385 | 0.6349 | 0.6302 | 0.6532 | 0.6349 | | No log | 23.0 | 230 | 1.6256 | 0.6349 | 0.6298 | 0.6546 | 0.6349 | | No log | 24.0 | 240 | 1.6173 | 0.6429 | 0.6377 | 0.6600 | 0.6429 | | No log | 25.0 | 250 | 1.6148 | 0.6429 | 0.6377 | 0.6600 | 0.6429 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0