Classification Training
Browse files
README.md
CHANGED
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
21 |
|
22 |
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 1.
|
25 |
-
- Accuracy: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Precision: 0.
|
28 |
-
- Recall: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -45,34 +45,44 @@ More information needed
|
|
45 |
|
46 |
The following hyperparameters were used during training:
|
47 |
- learning_rate: 5.314885705504048e-06
|
48 |
-
- train_batch_size:
|
49 |
-
- eval_batch_size:
|
50 |
- seed: 42
|
51 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
- lr_scheduler_type: linear
|
53 |
- lr_scheduler_warmup_steps: 100
|
54 |
-
- num_epochs:
|
55 |
- mixed_precision_training: Native AMP
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
60 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
### Framework versions
|
|
|
21 |
|
22 |
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 1.6148
|
25 |
+
- Accuracy: 0.6429
|
26 |
+
- F1: 0.6377
|
27 |
+
- Precision: 0.6600
|
28 |
+
- Recall: 0.6429
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
45 |
|
46 |
The following hyperparameters were used during training:
|
47 |
- learning_rate: 5.314885705504048e-06
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
- seed: 42
|
51 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
- lr_scheduler_type: linear
|
53 |
- lr_scheduler_warmup_steps: 100
|
54 |
+
- num_epochs: 25
|
55 |
- mixed_precision_training: Native AMP
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
60 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
61 |
+
| No log | 1.0 | 10 | 2.4233 | 0.1429 | 0.0916 | 0.0802 | 0.1429 |
|
62 |
+
| No log | 2.0 | 20 | 2.4147 | 0.1429 | 0.0920 | 0.0804 | 0.1429 |
|
63 |
+
| No log | 3.0 | 30 | 2.4004 | 0.1667 | 0.1208 | 0.1178 | 0.1667 |
|
64 |
+
| No log | 4.0 | 40 | 2.3840 | 0.1587 | 0.1192 | 0.1064 | 0.1587 |
|
65 |
+
| No log | 5.0 | 50 | 2.3674 | 0.1667 | 0.1293 | 0.1176 | 0.1667 |
|
66 |
+
| No log | 6.0 | 60 | 2.3469 | 0.1905 | 0.1467 | 0.1312 | 0.1905 |
|
67 |
+
| No log | 7.0 | 70 | 2.3135 | 0.1984 | 0.1750 | 0.2072 | 0.1984 |
|
68 |
+
| No log | 8.0 | 80 | 2.2775 | 0.2143 | 0.1964 | 0.2092 | 0.2143 |
|
69 |
+
| No log | 9.0 | 90 | 2.2407 | 0.2302 | 0.2121 | 0.2260 | 0.2302 |
|
70 |
+
| No log | 10.0 | 100 | 2.1807 | 0.3016 | 0.2911 | 0.3070 | 0.3016 |
|
71 |
+
| No log | 11.0 | 110 | 2.1111 | 0.3413 | 0.3332 | 0.3604 | 0.3413 |
|
72 |
+
| No log | 12.0 | 120 | 2.0411 | 0.4048 | 0.3799 | 0.3880 | 0.4048 |
|
73 |
+
| No log | 13.0 | 130 | 1.9745 | 0.4444 | 0.4421 | 0.4658 | 0.4444 |
|
74 |
+
| No log | 14.0 | 140 | 1.9188 | 0.5238 | 0.5207 | 0.5477 | 0.5238 |
|
75 |
+
| No log | 15.0 | 150 | 1.8678 | 0.5635 | 0.5585 | 0.5787 | 0.5635 |
|
76 |
+
| No log | 16.0 | 160 | 1.8253 | 0.5794 | 0.5685 | 0.5826 | 0.5794 |
|
77 |
+
| No log | 17.0 | 170 | 1.7861 | 0.5952 | 0.5879 | 0.6104 | 0.5952 |
|
78 |
+
| No log | 18.0 | 180 | 1.7471 | 0.6032 | 0.5896 | 0.6028 | 0.6032 |
|
79 |
+
| No log | 19.0 | 190 | 1.7105 | 0.6190 | 0.6132 | 0.6383 | 0.6190 |
|
80 |
+
| No log | 20.0 | 200 | 1.6786 | 0.6270 | 0.6221 | 0.6484 | 0.6270 |
|
81 |
+
| No log | 21.0 | 210 | 1.6556 | 0.6508 | 0.6428 | 0.6627 | 0.6508 |
|
82 |
+
| No log | 22.0 | 220 | 1.6385 | 0.6349 | 0.6302 | 0.6532 | 0.6349 |
|
83 |
+
| No log | 23.0 | 230 | 1.6256 | 0.6349 | 0.6298 | 0.6546 | 0.6349 |
|
84 |
+
| No log | 24.0 | 240 | 1.6173 | 0.6429 | 0.6377 | 0.6600 | 0.6429 |
|
85 |
+
| No log | 25.0 | 250 | 1.6148 | 0.6429 | 0.6377 | 0.6600 | 0.6429 |
|
86 |
|
87 |
|
88 |
### Framework versions
|