Classification Training
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: dslim/distilbert-NER
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
model-index:
|
13 |
+
- name: distilbert-classn-LinearAlg-finetuned-pred-span-width-3
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# distilbert-classn-LinearAlg-finetuned-pred-span-width-3
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.7560
|
25 |
+
- Accuracy: 0.8175
|
26 |
+
- F1: 0.8136
|
27 |
+
- Precision: 0.8277
|
28 |
+
- Recall: 0.8175
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 1e-05
|
48 |
+
- train_batch_size: 2
|
49 |
+
- eval_batch_size: 2
|
50 |
+
- seed: 42
|
51 |
+
- gradient_accumulation_steps: 2
|
52 |
+
- total_train_batch_size: 4
|
53 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_steps: 500
|
56 |
+
- num_epochs: 20
|
57 |
+
- mixed_precision_training: Native AMP
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
62 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
63 |
+
| 4.9235 | 0.6849 | 50 | 2.4998 | 0.0556 | 0.0219 | 0.0142 | 0.0556 |
|
64 |
+
| 4.8853 | 1.3699 | 100 | 2.4692 | 0.0556 | 0.0227 | 0.0148 | 0.0556 |
|
65 |
+
| 4.8296 | 2.0548 | 150 | 2.4199 | 0.0794 | 0.0499 | 0.0414 | 0.0794 |
|
66 |
+
| 4.7138 | 2.7397 | 200 | 2.3605 | 0.1111 | 0.0778 | 0.0800 | 0.1111 |
|
67 |
+
| 4.5483 | 3.4247 | 250 | 2.2678 | 0.2222 | 0.2171 | 0.2713 | 0.2222 |
|
68 |
+
| 4.4398 | 4.1096 | 300 | 2.1006 | 0.3730 | 0.3441 | 0.3723 | 0.3730 |
|
69 |
+
| 4.031 | 4.7945 | 350 | 1.9045 | 0.5238 | 0.4995 | 0.5172 | 0.5238 |
|
70 |
+
| 3.5384 | 5.4795 | 400 | 1.6756 | 0.6508 | 0.6382 | 0.6649 | 0.6508 |
|
71 |
+
| 2.9989 | 6.1644 | 450 | 1.4537 | 0.7302 | 0.7116 | 0.7624 | 0.7302 |
|
72 |
+
| 2.5192 | 6.8493 | 500 | 1.2494 | 0.7460 | 0.7344 | 0.7473 | 0.7460 |
|
73 |
+
| 1.811 | 7.5342 | 550 | 1.0760 | 0.7302 | 0.7242 | 0.7563 | 0.7302 |
|
74 |
+
| 1.4184 | 8.2192 | 600 | 0.9448 | 0.7937 | 0.7878 | 0.8223 | 0.7937 |
|
75 |
+
| 1.1262 | 8.9041 | 650 | 0.8517 | 0.7937 | 0.7871 | 0.8000 | 0.7937 |
|
76 |
+
| 0.7899 | 9.5890 | 700 | 0.8264 | 0.8016 | 0.7904 | 0.7993 | 0.8016 |
|
77 |
+
| 0.4857 | 10.2740 | 750 | 0.7620 | 0.8333 | 0.8275 | 0.8360 | 0.8333 |
|
78 |
+
| 0.439 | 10.9589 | 800 | 0.7612 | 0.8175 | 0.8099 | 0.8282 | 0.8175 |
|
79 |
+
| 0.3147 | 11.6438 | 850 | 0.7215 | 0.8175 | 0.8136 | 0.8211 | 0.8175 |
|
80 |
+
| 0.2098 | 12.3288 | 900 | 0.7429 | 0.8095 | 0.8039 | 0.8219 | 0.8095 |
|
81 |
+
| 0.1702 | 13.0137 | 950 | 0.7309 | 0.8095 | 0.8039 | 0.8244 | 0.8095 |
|
82 |
+
| 0.1215 | 13.6986 | 1000 | 0.7320 | 0.8175 | 0.8154 | 0.8327 | 0.8175 |
|
83 |
+
| 0.0812 | 14.3836 | 1050 | 0.7449 | 0.8175 | 0.8113 | 0.8286 | 0.8175 |
|
84 |
+
| 0.0693 | 15.0685 | 1100 | 0.7303 | 0.8175 | 0.8126 | 0.8233 | 0.8175 |
|
85 |
+
| 0.0728 | 15.7534 | 1150 | 0.7449 | 0.8175 | 0.8136 | 0.8277 | 0.8175 |
|
86 |
+
| 0.0321 | 16.4384 | 1200 | 0.7413 | 0.8175 | 0.8126 | 0.8233 | 0.8175 |
|
87 |
+
| 0.0662 | 17.1233 | 1250 | 0.7583 | 0.8175 | 0.8136 | 0.8277 | 0.8175 |
|
88 |
+
| 0.0596 | 17.8082 | 1300 | 0.7504 | 0.8175 | 0.8136 | 0.8277 | 0.8175 |
|
89 |
+
| 0.0216 | 18.4932 | 1350 | 0.7611 | 0.8175 | 0.8136 | 0.8277 | 0.8175 |
|
90 |
+
| 0.0353 | 19.1781 | 1400 | 0.7522 | 0.8175 | 0.8136 | 0.8277 | 0.8175 |
|
91 |
+
| 0.0348 | 19.8630 | 1450 | 0.7560 | 0.8175 | 0.8136 | 0.8277 | 0.8175 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.48.3
|
97 |
+
- Pytorch 2.5.1+cu124
|
98 |
+
- Datasets 3.3.1
|
99 |
+
- Tokenizers 0.21.0
|
runs/Feb20_15-27-28_ed60d19afb74/events.out.tfevents.1740065251.ed60d19afb74.10154.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0075b68a059f209144d811796a8fb3fa264b42ce39d5069f3588890c03dec2c0
|
3 |
+
size 25799
|