--- library_name: transformers license: apache-2.0 base_model: dslim/distilbert-NER tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-classn-LAlg-multihead-context-width-2 results: [] --- # distilbert-classn-LAlg-multihead-context-width-2 This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8459 - Accuracy: 0.7698 - F1: 0.7717 - Precision: 0.8049 - Recall: 0.7698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 2.4794 | 1.3514 | 50 | 2.4632 | 0.0952 | 0.0337 | 0.0269 | 0.0952 | | 2.4695 | 2.7027 | 100 | 2.4386 | 0.0794 | 0.0395 | 0.0332 | 0.0794 | | 2.4253 | 4.0541 | 150 | 2.4152 | 0.0556 | 0.0351 | 0.0299 | 0.0556 | | 2.3921 | 5.4054 | 200 | 2.3838 | 0.0794 | 0.0818 | 0.1342 | 0.0794 | | 2.3137 | 6.7568 | 250 | 2.3342 | 0.1349 | 0.1256 | 0.1343 | 0.1349 | | 2.2091 | 8.1081 | 300 | 2.2389 | 0.2460 | 0.2390 | 0.2692 | 0.2460 | | 2.0017 | 9.4595 | 350 | 2.0460 | 0.3889 | 0.3931 | 0.4582 | 0.3889 | | 1.6241 | 10.8108 | 400 | 1.7016 | 0.5476 | 0.5285 | 0.5501 | 0.5476 | | 1.1356 | 12.1622 | 450 | 1.3357 | 0.6825 | 0.6735 | 0.7118 | 0.6825 | | 0.7122 | 13.5135 | 500 | 1.0433 | 0.7540 | 0.7501 | 0.7818 | 0.7540 | | 0.4063 | 14.8649 | 550 | 0.9308 | 0.7540 | 0.7541 | 0.7860 | 0.7540 | | 0.2025 | 16.2162 | 600 | 0.8688 | 0.7857 | 0.7838 | 0.8068 | 0.7857 | | 0.1226 | 17.5676 | 650 | 0.8284 | 0.7698 | 0.7704 | 0.8092 | 0.7698 | | 0.0677 | 18.9189 | 700 | 0.8517 | 0.7778 | 0.7784 | 0.8180 | 0.7778 | | 0.0386 | 20.2703 | 750 | 0.8447 | 0.7857 | 0.7859 | 0.8250 | 0.7857 | | 0.0299 | 21.6216 | 800 | 0.8531 | 0.7698 | 0.7693 | 0.7984 | 0.7698 | | 0.0236 | 22.9730 | 850 | 0.8446 | 0.7698 | 0.7717 | 0.8049 | 0.7698 | | 0.0182 | 24.3243 | 900 | 0.8459 | 0.7698 | 0.7717 | 0.8049 | 0.7698 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0