Classification Training
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: dslim/distilbert-NER
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
model-index:
|
13 |
+
- name: distilbert-classn-LAlg-multihead-context-width-2
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# distilbert-classn-LAlg-multihead-context-width-2
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.8459
|
25 |
+
- Accuracy: 0.7698
|
26 |
+
- F1: 0.7717
|
27 |
+
- Precision: 0.8049
|
28 |
+
- Recall: 0.7698
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 1e-05
|
48 |
+
- train_batch_size: 8
|
49 |
+
- eval_batch_size: 8
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_steps: 500
|
54 |
+
- num_epochs: 25
|
55 |
+
- mixed_precision_training: Native AMP
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
60 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
61 |
+
| 2.4794 | 1.3514 | 50 | 2.4632 | 0.0952 | 0.0337 | 0.0269 | 0.0952 |
|
62 |
+
| 2.4695 | 2.7027 | 100 | 2.4386 | 0.0794 | 0.0395 | 0.0332 | 0.0794 |
|
63 |
+
| 2.4253 | 4.0541 | 150 | 2.4152 | 0.0556 | 0.0351 | 0.0299 | 0.0556 |
|
64 |
+
| 2.3921 | 5.4054 | 200 | 2.3838 | 0.0794 | 0.0818 | 0.1342 | 0.0794 |
|
65 |
+
| 2.3137 | 6.7568 | 250 | 2.3342 | 0.1349 | 0.1256 | 0.1343 | 0.1349 |
|
66 |
+
| 2.2091 | 8.1081 | 300 | 2.2389 | 0.2460 | 0.2390 | 0.2692 | 0.2460 |
|
67 |
+
| 2.0017 | 9.4595 | 350 | 2.0460 | 0.3889 | 0.3931 | 0.4582 | 0.3889 |
|
68 |
+
| 1.6241 | 10.8108 | 400 | 1.7016 | 0.5476 | 0.5285 | 0.5501 | 0.5476 |
|
69 |
+
| 1.1356 | 12.1622 | 450 | 1.3357 | 0.6825 | 0.6735 | 0.7118 | 0.6825 |
|
70 |
+
| 0.7122 | 13.5135 | 500 | 1.0433 | 0.7540 | 0.7501 | 0.7818 | 0.7540 |
|
71 |
+
| 0.4063 | 14.8649 | 550 | 0.9308 | 0.7540 | 0.7541 | 0.7860 | 0.7540 |
|
72 |
+
| 0.2025 | 16.2162 | 600 | 0.8688 | 0.7857 | 0.7838 | 0.8068 | 0.7857 |
|
73 |
+
| 0.1226 | 17.5676 | 650 | 0.8284 | 0.7698 | 0.7704 | 0.8092 | 0.7698 |
|
74 |
+
| 0.0677 | 18.9189 | 700 | 0.8517 | 0.7778 | 0.7784 | 0.8180 | 0.7778 |
|
75 |
+
| 0.0386 | 20.2703 | 750 | 0.8447 | 0.7857 | 0.7859 | 0.8250 | 0.7857 |
|
76 |
+
| 0.0299 | 21.6216 | 800 | 0.8531 | 0.7698 | 0.7693 | 0.7984 | 0.7698 |
|
77 |
+
| 0.0236 | 22.9730 | 850 | 0.8446 | 0.7698 | 0.7717 | 0.8049 | 0.7698 |
|
78 |
+
| 0.0182 | 24.3243 | 900 | 0.8459 | 0.7698 | 0.7717 | 0.8049 | 0.7698 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.48.3
|
84 |
+
- Pytorch 2.5.1+cu124
|
85 |
+
- Datasets 3.3.1
|
86 |
+
- Tokenizers 0.21.0
|